| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  |-  G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) | 
						
							| 2 |  | ftc1.a |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | ftc1.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | ftc1.le |  |-  ( ph -> A <_ B ) | 
						
							| 5 |  | ftc1.s |  |-  ( ph -> ( A (,) B ) C_ D ) | 
						
							| 6 |  | ftc1.d |  |-  ( ph -> D C_ RR ) | 
						
							| 7 |  | ftc1.i |  |-  ( ph -> F e. L^1 ) | 
						
							| 8 |  | ftc1.c |  |-  ( ph -> C e. ( A (,) B ) ) | 
						
							| 9 |  | ftc1.f |  |-  ( ph -> F e. ( ( K CnP L ) ` C ) ) | 
						
							| 10 |  | ftc1.j |  |-  J = ( L |`t RR ) | 
						
							| 11 |  | ftc1.k |  |-  K = ( L |`t D ) | 
						
							| 12 |  | ftc1.l |  |-  L = ( TopOpen ` CCfld ) | 
						
							| 13 | 12 | tgioo2 |  |-  ( topGen ` ran (,) ) = ( L |`t RR ) | 
						
							| 14 | 10 13 | eqtr4i |  |-  J = ( topGen ` ran (,) ) | 
						
							| 15 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 16 | 14 15 | eqeltri |  |-  J e. Top | 
						
							| 17 | 16 | a1i |  |-  ( ph -> J e. Top ) | 
						
							| 18 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 19 | 2 3 18 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 20 |  | iooretop |  |-  ( A (,) B ) e. ( topGen ` ran (,) ) | 
						
							| 21 | 20 14 | eleqtrri |  |-  ( A (,) B ) e. J | 
						
							| 22 | 21 | a1i |  |-  ( ph -> ( A (,) B ) e. J ) | 
						
							| 23 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 24 | 23 | a1i |  |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) ) | 
						
							| 25 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 26 | 14 | unieqi |  |-  U. J = U. ( topGen ` ran (,) ) | 
						
							| 27 | 25 26 | eqtr4i |  |-  RR = U. J | 
						
							| 28 | 27 | ssntr |  |-  ( ( ( J e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. J /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` J ) ` ( A [,] B ) ) ) | 
						
							| 29 | 17 19 22 24 28 | syl22anc |  |-  ( ph -> ( A (,) B ) C_ ( ( int ` J ) ` ( A [,] B ) ) ) | 
						
							| 30 | 29 8 | sseldd |  |-  ( ph -> C e. ( ( int ` J ) ` ( A [,] B ) ) ) | 
						
							| 31 |  | eqid |  |-  ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) | 
						
							| 32 | 1 2 3 4 5 6 7 8 9 10 11 12 31 | ftc1lem6 |  |-  ( ph -> ( F ` C ) e. ( ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) | 
						
							| 33 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 34 | 33 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 |  |-  ( ph -> F : D --> CC ) | 
						
							| 36 | 1 2 3 4 5 6 7 35 | ftc1lem2 |  |-  ( ph -> G : ( A [,] B ) --> CC ) | 
						
							| 37 | 10 12 31 34 36 19 | eldv |  |-  ( ph -> ( C ( RR _D G ) ( F ` C ) <-> ( C e. ( ( int ` J ) ` ( A [,] B ) ) /\ ( F ` C ) e. ( ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) ) ) | 
						
							| 38 | 30 32 37 | mpbir2and |  |-  ( ph -> C ( RR _D G ) ( F ` C ) ) |