Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1.s |
|- ( ph -> ( A (,) B ) C_ D ) |
6 |
|
ftc1.d |
|- ( ph -> D C_ RR ) |
7 |
|
ftc1.i |
|- ( ph -> F e. L^1 ) |
8 |
|
ftc1a.f |
|- ( ph -> F : D --> CC ) |
9 |
1 2 3 4 5 6 7 8
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
10 |
|
fvexd |
|- ( ( ( ph /\ e e. RR+ ) /\ w e. D ) -> ( F ` w ) e. _V ) |
11 |
8
|
feqmptd |
|- ( ph -> F = ( w e. D |-> ( F ` w ) ) ) |
12 |
11 7
|
eqeltrrd |
|- ( ph -> ( w e. D |-> ( F ` w ) ) e. L^1 ) |
13 |
12
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> ( w e. D |-> ( F ` w ) ) e. L^1 ) |
14 |
|
simpr |
|- ( ( ph /\ e e. RR+ ) -> e e. RR+ ) |
15 |
10 13 14
|
itgcn |
|- ( ( ph /\ e e. RR+ ) -> E. d e. RR+ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) |
16 |
|
oveq12 |
|- ( ( s = z /\ r = y ) -> ( s - r ) = ( z - y ) ) |
17 |
16
|
fveq2d |
|- ( ( s = z /\ r = y ) -> ( abs ` ( s - r ) ) = ( abs ` ( z - y ) ) ) |
18 |
17
|
breq1d |
|- ( ( s = z /\ r = y ) -> ( ( abs ` ( s - r ) ) < d <-> ( abs ` ( z - y ) ) < d ) ) |
19 |
|
fveq2 |
|- ( s = z -> ( G ` s ) = ( G ` z ) ) |
20 |
|
fveq2 |
|- ( r = y -> ( G ` r ) = ( G ` y ) ) |
21 |
19 20
|
oveqan12d |
|- ( ( s = z /\ r = y ) -> ( ( G ` s ) - ( G ` r ) ) = ( ( G ` z ) - ( G ` y ) ) ) |
22 |
21
|
fveq2d |
|- ( ( s = z /\ r = y ) -> ( abs ` ( ( G ` s ) - ( G ` r ) ) ) = ( abs ` ( ( G ` z ) - ( G ` y ) ) ) ) |
23 |
22
|
breq1d |
|- ( ( s = z /\ r = y ) -> ( ( abs ` ( ( G ` s ) - ( G ` r ) ) ) < e <-> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
24 |
18 23
|
imbi12d |
|- ( ( s = z /\ r = y ) -> ( ( ( abs ` ( s - r ) ) < d -> ( abs ` ( ( G ` s ) - ( G ` r ) ) ) < e ) <-> ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) |
25 |
24
|
ancoms |
|- ( ( r = y /\ s = z ) -> ( ( ( abs ` ( s - r ) ) < d -> ( abs ` ( ( G ` s ) - ( G ` r ) ) ) < e ) <-> ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) |
26 |
|
oveq12 |
|- ( ( s = y /\ r = z ) -> ( s - r ) = ( y - z ) ) |
27 |
26
|
fveq2d |
|- ( ( s = y /\ r = z ) -> ( abs ` ( s - r ) ) = ( abs ` ( y - z ) ) ) |
28 |
27
|
breq1d |
|- ( ( s = y /\ r = z ) -> ( ( abs ` ( s - r ) ) < d <-> ( abs ` ( y - z ) ) < d ) ) |
29 |
|
fveq2 |
|- ( s = y -> ( G ` s ) = ( G ` y ) ) |
30 |
|
fveq2 |
|- ( r = z -> ( G ` r ) = ( G ` z ) ) |
31 |
29 30
|
oveqan12d |
|- ( ( s = y /\ r = z ) -> ( ( G ` s ) - ( G ` r ) ) = ( ( G ` y ) - ( G ` z ) ) ) |
32 |
31
|
fveq2d |
|- ( ( s = y /\ r = z ) -> ( abs ` ( ( G ` s ) - ( G ` r ) ) ) = ( abs ` ( ( G ` y ) - ( G ` z ) ) ) ) |
33 |
32
|
breq1d |
|- ( ( s = y /\ r = z ) -> ( ( abs ` ( ( G ` s ) - ( G ` r ) ) ) < e <-> ( abs ` ( ( G ` y ) - ( G ` z ) ) ) < e ) ) |
34 |
28 33
|
imbi12d |
|- ( ( s = y /\ r = z ) -> ( ( ( abs ` ( s - r ) ) < d -> ( abs ` ( ( G ` s ) - ( G ` r ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < d -> ( abs ` ( ( G ` y ) - ( G ` z ) ) ) < e ) ) ) |
35 |
34
|
ancoms |
|- ( ( r = z /\ s = y ) -> ( ( ( abs ` ( s - r ) ) < d -> ( abs ` ( ( G ` s ) - ( G ` r ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < d -> ( abs ` ( ( G ` y ) - ( G ` z ) ) ) < e ) ) ) |
36 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
37 |
2 3 36
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
38 |
37
|
ad2antrr |
|- ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) -> ( A [,] B ) C_ RR ) |
39 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( A [,] B ) C_ RR ) |
40 |
|
simprr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> z e. ( A [,] B ) ) |
41 |
39 40
|
sseldd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> z e. RR ) |
42 |
41
|
recnd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> z e. CC ) |
43 |
|
simprl |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> y e. ( A [,] B ) ) |
44 |
39 43
|
sseldd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> y e. RR ) |
45 |
44
|
recnd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> y e. CC ) |
46 |
42 45
|
abssubd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) |
47 |
46
|
breq1d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( ( abs ` ( z - y ) ) < d <-> ( abs ` ( y - z ) ) < d ) ) |
48 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> G : ( A [,] B ) --> CC ) |
49 |
48 40
|
ffvelrnd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( G ` z ) e. CC ) |
50 |
48 43
|
ffvelrnd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( G ` y ) e. CC ) |
51 |
49 50
|
abssubd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) = ( abs ` ( ( G ` y ) - ( G ` z ) ) ) ) |
52 |
51
|
breq1d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e <-> ( abs ` ( ( G ` y ) - ( G ` z ) ) ) < e ) ) |
53 |
47 52
|
imbi12d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < d -> ( abs ` ( ( G ` y ) - ( G ` z ) ) ) < e ) ) ) |
54 |
|
simpr3 |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> y <_ z ) |
55 |
2
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> A e. RR ) |
56 |
3
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> B e. RR ) |
57 |
4
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> A <_ B ) |
58 |
5
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> ( A (,) B ) C_ D ) |
59 |
6
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> D C_ RR ) |
60 |
7
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> F e. L^1 ) |
61 |
8
|
adantr |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> F : D --> CC ) |
62 |
|
simpr1 |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> y e. ( A [,] B ) ) |
63 |
|
simpr2 |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> z e. ( A [,] B ) ) |
64 |
1 55 56 57 58 59 60 61 62 63
|
ftc1lem1 |
|- ( ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) /\ y <_ z ) -> ( ( G ` z ) - ( G ` y ) ) = S. ( y (,) z ) ( F ` t ) _d t ) |
65 |
54 64
|
mpdan |
|- ( ( ph /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> ( ( G ` z ) - ( G ` y ) ) = S. ( y (,) z ) ( F ` t ) _d t ) |
66 |
65
|
adantlr |
|- ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> ( ( G ` z ) - ( G ` y ) ) = S. ( y (,) z ) ( F ` t ) _d t ) |
67 |
66
|
ad2ant2r |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( ( G ` z ) - ( G ` y ) ) = S. ( y (,) z ) ( F ` t ) _d t ) |
68 |
67
|
fveq2d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) = ( abs ` S. ( y (,) z ) ( F ` t ) _d t ) ) |
69 |
|
fvexd |
|- ( ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) /\ t e. ( y (,) z ) ) -> ( F ` t ) e. _V ) |
70 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> A e. RR ) |
71 |
70
|
rexrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> A e. RR* ) |
72 |
|
simprl1 |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> y e. ( A [,] B ) ) |
73 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> B e. RR ) |
74 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
75 |
70 73 74
|
syl2anc |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
76 |
72 75
|
mpbid |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
77 |
76
|
simp2d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> A <_ y ) |
78 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ y ) -> ( y (,) z ) C_ ( A (,) z ) ) |
79 |
71 77 78
|
syl2anc |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y (,) z ) C_ ( A (,) z ) ) |
80 |
73
|
rexrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> B e. RR* ) |
81 |
|
simprl2 |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> z e. ( A [,] B ) ) |
82 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( z e. ( A [,] B ) <-> ( z e. RR /\ A <_ z /\ z <_ B ) ) ) |
83 |
70 73 82
|
syl2anc |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( z e. ( A [,] B ) <-> ( z e. RR /\ A <_ z /\ z <_ B ) ) ) |
84 |
81 83
|
mpbid |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( z e. RR /\ A <_ z /\ z <_ B ) ) |
85 |
84
|
simp3d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> z <_ B ) |
86 |
|
iooss2 |
|- ( ( B e. RR* /\ z <_ B ) -> ( A (,) z ) C_ ( A (,) B ) ) |
87 |
80 85 86
|
syl2anc |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( A (,) z ) C_ ( A (,) B ) ) |
88 |
79 87
|
sstrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y (,) z ) C_ ( A (,) B ) ) |
89 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( A (,) B ) C_ D ) |
90 |
88 89
|
sstrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y (,) z ) C_ D ) |
91 |
|
ioombl |
|- ( y (,) z ) e. dom vol |
92 |
91
|
a1i |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y (,) z ) e. dom vol ) |
93 |
|
fvexd |
|- ( ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) /\ t e. D ) -> ( F ` t ) e. _V ) |
94 |
8
|
feqmptd |
|- ( ph -> F = ( t e. D |-> ( F ` t ) ) ) |
95 |
94 7
|
eqeltrrd |
|- ( ph -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
96 |
95
|
ad3antrrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
97 |
90 92 93 96
|
iblss |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( t e. ( y (,) z ) |-> ( F ` t ) ) e. L^1 ) |
98 |
69 97
|
itgcl |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> S. ( y (,) z ) ( F ` t ) _d t e. CC ) |
99 |
98
|
abscld |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` S. ( y (,) z ) ( F ` t ) _d t ) e. RR ) |
100 |
|
iblmbf |
|- ( ( t e. ( y (,) z ) |-> ( F ` t ) ) e. L^1 -> ( t e. ( y (,) z ) |-> ( F ` t ) ) e. MblFn ) |
101 |
97 100
|
syl |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( t e. ( y (,) z ) |-> ( F ` t ) ) e. MblFn ) |
102 |
101 69
|
mbfmptcl |
|- ( ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) /\ t e. ( y (,) z ) ) -> ( F ` t ) e. CC ) |
103 |
102
|
abscld |
|- ( ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) /\ t e. ( y (,) z ) ) -> ( abs ` ( F ` t ) ) e. RR ) |
104 |
69 97
|
iblabs |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( t e. ( y (,) z ) |-> ( abs ` ( F ` t ) ) ) e. L^1 ) |
105 |
103 104
|
itgrecl |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t e. RR ) |
106 |
|
simprl |
|- ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) -> e e. RR+ ) |
107 |
106
|
ad2antrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> e e. RR+ ) |
108 |
107
|
rpred |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> e e. RR ) |
109 |
69 97
|
itgabs |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` S. ( y (,) z ) ( F ` t ) _d t ) <_ S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t ) |
110 |
|
mblvol |
|- ( ( y (,) z ) e. dom vol -> ( vol ` ( y (,) z ) ) = ( vol* ` ( y (,) z ) ) ) |
111 |
91 110
|
ax-mp |
|- ( vol ` ( y (,) z ) ) = ( vol* ` ( y (,) z ) ) |
112 |
|
ioossre |
|- ( y (,) z ) C_ RR |
113 |
|
ovolcl |
|- ( ( y (,) z ) C_ RR -> ( vol* ` ( y (,) z ) ) e. RR* ) |
114 |
112 113
|
mp1i |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( vol* ` ( y (,) z ) ) e. RR* ) |
115 |
84
|
simp1d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> z e. RR ) |
116 |
76
|
simp1d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> y e. RR ) |
117 |
115 116
|
resubcld |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( z - y ) e. RR ) |
118 |
117
|
rexrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( z - y ) e. RR* ) |
119 |
|
simprr |
|- ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) -> d e. RR+ ) |
120 |
119
|
ad2antrr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> d e. RR+ ) |
121 |
120
|
rpxrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> d e. RR* ) |
122 |
|
ioossicc |
|- ( y (,) z ) C_ ( y [,] z ) |
123 |
|
iccssre |
|- ( ( y e. RR /\ z e. RR ) -> ( y [,] z ) C_ RR ) |
124 |
116 115 123
|
syl2anc |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( y [,] z ) C_ RR ) |
125 |
|
ovolss |
|- ( ( ( y (,) z ) C_ ( y [,] z ) /\ ( y [,] z ) C_ RR ) -> ( vol* ` ( y (,) z ) ) <_ ( vol* ` ( y [,] z ) ) ) |
126 |
122 124 125
|
sylancr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( vol* ` ( y (,) z ) ) <_ ( vol* ` ( y [,] z ) ) ) |
127 |
|
simprl3 |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> y <_ z ) |
128 |
|
ovolicc |
|- ( ( y e. RR /\ z e. RR /\ y <_ z ) -> ( vol* ` ( y [,] z ) ) = ( z - y ) ) |
129 |
116 115 127 128
|
syl3anc |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( vol* ` ( y [,] z ) ) = ( z - y ) ) |
130 |
126 129
|
breqtrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( vol* ` ( y (,) z ) ) <_ ( z - y ) ) |
131 |
116 115 127
|
abssubge0d |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` ( z - y ) ) = ( z - y ) ) |
132 |
|
simprr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` ( z - y ) ) < d ) |
133 |
131 132
|
eqbrtrrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( z - y ) < d ) |
134 |
114 118 121 130 133
|
xrlelttrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( vol* ` ( y (,) z ) ) < d ) |
135 |
111 134
|
eqbrtrid |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( vol ` ( y (,) z ) ) < d ) |
136 |
|
sseq1 |
|- ( u = ( y (,) z ) -> ( u C_ D <-> ( y (,) z ) C_ D ) ) |
137 |
|
fveq2 |
|- ( u = ( y (,) z ) -> ( vol ` u ) = ( vol ` ( y (,) z ) ) ) |
138 |
137
|
breq1d |
|- ( u = ( y (,) z ) -> ( ( vol ` u ) < d <-> ( vol ` ( y (,) z ) ) < d ) ) |
139 |
136 138
|
anbi12d |
|- ( u = ( y (,) z ) -> ( ( u C_ D /\ ( vol ` u ) < d ) <-> ( ( y (,) z ) C_ D /\ ( vol ` ( y (,) z ) ) < d ) ) ) |
140 |
|
2fveq3 |
|- ( w = t -> ( abs ` ( F ` w ) ) = ( abs ` ( F ` t ) ) ) |
141 |
140
|
cbvitgv |
|- S. u ( abs ` ( F ` w ) ) _d w = S. u ( abs ` ( F ` t ) ) _d t |
142 |
|
itgeq1 |
|- ( u = ( y (,) z ) -> S. u ( abs ` ( F ` t ) ) _d t = S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t ) |
143 |
141 142
|
eqtrid |
|- ( u = ( y (,) z ) -> S. u ( abs ` ( F ` w ) ) _d w = S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t ) |
144 |
143
|
breq1d |
|- ( u = ( y (,) z ) -> ( S. u ( abs ` ( F ` w ) ) _d w < e <-> S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t < e ) ) |
145 |
139 144
|
imbi12d |
|- ( u = ( y (,) z ) -> ( ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) <-> ( ( ( y (,) z ) C_ D /\ ( vol ` ( y (,) z ) ) < d ) -> S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t < e ) ) ) |
146 |
|
simplr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) |
147 |
145 146 92
|
rspcdva |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( ( ( y (,) z ) C_ D /\ ( vol ` ( y (,) z ) ) < d ) -> S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t < e ) ) |
148 |
90 135 147
|
mp2and |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> S. ( y (,) z ) ( abs ` ( F ` t ) ) _d t < e ) |
149 |
99 105 108 109 148
|
lelttrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` S. ( y (,) z ) ( F ` t ) _d t ) < e ) |
150 |
68 149
|
eqbrtrd |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) /\ ( abs ` ( z - y ) ) < d ) ) -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) |
151 |
150
|
expr |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) /\ y <_ z ) ) -> ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
152 |
25 35 38 53 151
|
wlogle |
|- ( ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) /\ ( y e. ( A [,] B ) /\ z e. ( A [,] B ) ) ) -> ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
153 |
152
|
ralrimivva |
|- ( ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) /\ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) ) -> A. y e. ( A [,] B ) A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
154 |
153
|
ex |
|- ( ( ph /\ ( e e. RR+ /\ d e. RR+ ) ) -> ( A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) -> A. y e. ( A [,] B ) A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) |
155 |
154
|
anassrs |
|- ( ( ( ph /\ e e. RR+ ) /\ d e. RR+ ) -> ( A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) -> A. y e. ( A [,] B ) A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) |
156 |
155
|
reximdva |
|- ( ( ph /\ e e. RR+ ) -> ( E. d e. RR+ A. u e. dom vol ( ( u C_ D /\ ( vol ` u ) < d ) -> S. u ( abs ` ( F ` w ) ) _d w < e ) -> E. d e. RR+ A. y e. ( A [,] B ) A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) |
157 |
15 156
|
mpd |
|- ( ( ph /\ e e. RR+ ) -> E. d e. RR+ A. y e. ( A [,] B ) A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
158 |
|
r19.12 |
|- ( E. d e. RR+ A. y e. ( A [,] B ) A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) -> A. y e. ( A [,] B ) E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
159 |
157 158
|
syl |
|- ( ( ph /\ e e. RR+ ) -> A. y e. ( A [,] B ) E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
160 |
159
|
ralrimiva |
|- ( ph -> A. e e. RR+ A. y e. ( A [,] B ) E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
161 |
|
ralcom |
|- ( A. e e. RR+ A. y e. ( A [,] B ) E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) <-> A. y e. ( A [,] B ) A. e e. RR+ E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
162 |
160 161
|
sylib |
|- ( ph -> A. y e. ( A [,] B ) A. e e. RR+ E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) |
163 |
|
ax-resscn |
|- RR C_ CC |
164 |
37 163
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
165 |
|
ssid |
|- CC C_ CC |
166 |
|
elcncf2 |
|- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) A. e e. RR+ E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) ) |
167 |
164 165 166
|
sylancl |
|- ( ph -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) A. e e. RR+ E. d e. RR+ A. z e. ( A [,] B ) ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( G ` z ) - ( G ` y ) ) ) < e ) ) ) ) |
168 |
9 162 167
|
mpbir2and |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |