Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1cn.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1cn.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1cn.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1cn.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1cn.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
6 |
|
ftc1cn.i |
|- ( ph -> F e. L^1 ) |
7 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
8 |
7
|
a1i |
|- ( ph -> ( RR _D G ) : dom ( RR _D G ) --> CC ) |
9 |
8
|
ffund |
|- ( ph -> Fun ( RR _D G ) ) |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
10
|
a1i |
|- ( ph -> RR C_ CC ) |
12 |
|
ssidd |
|- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
13 |
|
ioossre |
|- ( A (,) B ) C_ RR |
14 |
13
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
15 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
16 |
5 15
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
17 |
1 2 3 4 12 14 6 16
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
18 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
19 |
2 3 18
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
21 |
20
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
22 |
11 17 19 21 20
|
dvbssntr |
|- ( ph -> dom ( RR _D G ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
23 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
24 |
2 3 23
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
25 |
22 24
|
sseqtrd |
|- ( ph -> dom ( RR _D G ) C_ ( A (,) B ) ) |
26 |
2
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> A e. RR ) |
27 |
3
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> B e. RR ) |
28 |
4
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> A <_ B ) |
29 |
|
ssidd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A (,) B ) ) |
30 |
13
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ RR ) |
31 |
6
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> F e. L^1 ) |
32 |
|
simpr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A (,) B ) ) |
33 |
13 10
|
sstri |
|- ( A (,) B ) C_ CC |
34 |
|
ssid |
|- CC C_ CC |
35 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
36 |
20
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
37 |
36
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
38 |
20 35 37
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
39 |
33 34 38
|
mp2an |
|- ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) |
40 |
5 39
|
eleqtrdi |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
42 |
33
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
43 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
44 |
36 42 43
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
45 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
46 |
44 45
|
syl |
|- ( ph -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
47 |
46
|
eleq2d |
|- ( ph -> ( y e. ( A (,) B ) <-> y e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) ) |
48 |
47
|
biimpa |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
49 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
50 |
49
|
cncnpi |
|- ( ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
51 |
41 48 50
|
syl2anc |
|- ( ( ph /\ y e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
52 |
1 26 27 28 29 30 31 32 51 21 35 20
|
ftc1 |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y ( RR _D G ) ( F ` y ) ) |
53 |
|
vex |
|- y e. _V |
54 |
|
fvex |
|- ( F ` y ) e. _V |
55 |
53 54
|
breldm |
|- ( y ( RR _D G ) ( F ` y ) -> y e. dom ( RR _D G ) ) |
56 |
52 55
|
syl |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. dom ( RR _D G ) ) |
57 |
25 56
|
eqelssd |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
58 |
|
df-fn |
|- ( ( RR _D G ) Fn ( A (,) B ) <-> ( Fun ( RR _D G ) /\ dom ( RR _D G ) = ( A (,) B ) ) ) |
59 |
9 57 58
|
sylanbrc |
|- ( ph -> ( RR _D G ) Fn ( A (,) B ) ) |
60 |
16
|
ffnd |
|- ( ph -> F Fn ( A (,) B ) ) |
61 |
9
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> Fun ( RR _D G ) ) |
62 |
|
funbrfv |
|- ( Fun ( RR _D G ) -> ( y ( RR _D G ) ( F ` y ) -> ( ( RR _D G ) ` y ) = ( F ` y ) ) ) |
63 |
61 52 62
|
sylc |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( RR _D G ) ` y ) = ( F ` y ) ) |
64 |
59 60 63
|
eqfnfvd |
|- ( ph -> ( RR _D G ) = F ) |