| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  |-  G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) | 
						
							| 2 |  | ftc1.a |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | ftc1.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | ftc1.le |  |-  ( ph -> A <_ B ) | 
						
							| 5 |  | ftc1.s |  |-  ( ph -> ( A (,) B ) C_ D ) | 
						
							| 6 |  | ftc1.d |  |-  ( ph -> D C_ RR ) | 
						
							| 7 |  | ftc1.i |  |-  ( ph -> F e. L^1 ) | 
						
							| 8 |  | ftc1.c |  |-  ( ph -> C e. ( A (,) B ) ) | 
						
							| 9 |  | ftc1.f |  |-  ( ph -> F e. ( ( K CnP L ) ` C ) ) | 
						
							| 10 |  | ftc1.j |  |-  J = ( L |`t RR ) | 
						
							| 11 |  | ftc1.k |  |-  K = ( L |`t D ) | 
						
							| 12 |  | ftc1.l |  |-  L = ( TopOpen ` CCfld ) | 
						
							| 13 | 12 | cnfldtopon |  |-  L e. ( TopOn ` CC ) | 
						
							| 14 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 15 | 6 14 | sstrdi |  |-  ( ph -> D C_ CC ) | 
						
							| 16 |  | resttopon |  |-  ( ( L e. ( TopOn ` CC ) /\ D C_ CC ) -> ( L |`t D ) e. ( TopOn ` D ) ) | 
						
							| 17 | 13 15 16 | sylancr |  |-  ( ph -> ( L |`t D ) e. ( TopOn ` D ) ) | 
						
							| 18 | 11 17 | eqeltrid |  |-  ( ph -> K e. ( TopOn ` D ) ) | 
						
							| 19 | 13 | a1i |  |-  ( ph -> L e. ( TopOn ` CC ) ) | 
						
							| 20 |  | cnpf2 |  |-  ( ( K e. ( TopOn ` D ) /\ L e. ( TopOn ` CC ) /\ F e. ( ( K CnP L ) ` C ) ) -> F : D --> CC ) | 
						
							| 21 | 18 19 9 20 | syl3anc |  |-  ( ph -> F : D --> CC ) |