Metamath Proof Explorer


Theorem ftc1lem3

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses ftc1.g
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t )
ftc1.a
|- ( ph -> A e. RR )
ftc1.b
|- ( ph -> B e. RR )
ftc1.le
|- ( ph -> A <_ B )
ftc1.s
|- ( ph -> ( A (,) B ) C_ D )
ftc1.d
|- ( ph -> D C_ RR )
ftc1.i
|- ( ph -> F e. L^1 )
ftc1.c
|- ( ph -> C e. ( A (,) B ) )
ftc1.f
|- ( ph -> F e. ( ( K CnP L ) ` C ) )
ftc1.j
|- J = ( L |`t RR )
ftc1.k
|- K = ( L |`t D )
ftc1.l
|- L = ( TopOpen ` CCfld )
Assertion ftc1lem3
|- ( ph -> F : D --> CC )

Proof

Step Hyp Ref Expression
1 ftc1.g
 |-  G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t )
2 ftc1.a
 |-  ( ph -> A e. RR )
3 ftc1.b
 |-  ( ph -> B e. RR )
4 ftc1.le
 |-  ( ph -> A <_ B )
5 ftc1.s
 |-  ( ph -> ( A (,) B ) C_ D )
6 ftc1.d
 |-  ( ph -> D C_ RR )
7 ftc1.i
 |-  ( ph -> F e. L^1 )
8 ftc1.c
 |-  ( ph -> C e. ( A (,) B ) )
9 ftc1.f
 |-  ( ph -> F e. ( ( K CnP L ) ` C ) )
10 ftc1.j
 |-  J = ( L |`t RR )
11 ftc1.k
 |-  K = ( L |`t D )
12 ftc1.l
 |-  L = ( TopOpen ` CCfld )
13 12 cnfldtopon
 |-  L e. ( TopOn ` CC )
14 ax-resscn
 |-  RR C_ CC
15 6 14 sstrdi
 |-  ( ph -> D C_ CC )
16 resttopon
 |-  ( ( L e. ( TopOn ` CC ) /\ D C_ CC ) -> ( L |`t D ) e. ( TopOn ` D ) )
17 13 15 16 sylancr
 |-  ( ph -> ( L |`t D ) e. ( TopOn ` D ) )
18 11 17 eqeltrid
 |-  ( ph -> K e. ( TopOn ` D ) )
19 13 a1i
 |-  ( ph -> L e. ( TopOn ` CC ) )
20 cnpf2
 |-  ( ( K e. ( TopOn ` D ) /\ L e. ( TopOn ` CC ) /\ F e. ( ( K CnP L ) ` C ) ) -> F : D --> CC )
21 18 19 9 20 syl3anc
 |-  ( ph -> F : D --> CC )