| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  |-  G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) | 
						
							| 2 |  | ftc1.a |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | ftc1.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | ftc1.le |  |-  ( ph -> A <_ B ) | 
						
							| 5 |  | ftc1.s |  |-  ( ph -> ( A (,) B ) C_ D ) | 
						
							| 6 |  | ftc1.d |  |-  ( ph -> D C_ RR ) | 
						
							| 7 |  | ftc1.i |  |-  ( ph -> F e. L^1 ) | 
						
							| 8 |  | ftc1.c |  |-  ( ph -> C e. ( A (,) B ) ) | 
						
							| 9 |  | ftc1.f |  |-  ( ph -> F e. ( ( K CnP L ) ` C ) ) | 
						
							| 10 |  | ftc1.j |  |-  J = ( L |`t RR ) | 
						
							| 11 |  | ftc1.k |  |-  K = ( L |`t D ) | 
						
							| 12 |  | ftc1.l |  |-  L = ( TopOpen ` CCfld ) | 
						
							| 13 |  | ftc1.h |  |-  H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) | 
						
							| 14 |  | ftc1.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 15 |  | ftc1.r |  |-  ( ph -> R e. RR+ ) | 
						
							| 16 |  | ftc1.fc |  |-  ( ( ph /\ y e. D ) -> ( ( abs ` ( y - C ) ) < R -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < E ) ) | 
						
							| 17 |  | ftc1.x1 |  |-  ( ph -> X e. ( A [,] B ) ) | 
						
							| 18 |  | ftc1.x2 |  |-  ( ph -> ( abs ` ( X - C ) ) < R ) | 
						
							| 19 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 20 | 2 3 19 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 21 | 20 17 | sseldd |  |-  ( ph -> X e. RR ) | 
						
							| 22 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 23 | 22 8 | sselid |  |-  ( ph -> C e. ( A [,] B ) ) | 
						
							| 24 | 20 23 | sseldd |  |-  ( ph -> C e. RR ) | 
						
							| 25 | 21 24 | lttri2d |  |-  ( ph -> ( X =/= C <-> ( X < C \/ C < X ) ) ) | 
						
							| 26 | 25 | biimpa |  |-  ( ( ph /\ X =/= C ) -> ( X < C \/ C < X ) ) | 
						
							| 27 | 17 | adantr |  |-  ( ( ph /\ X < C ) -> X e. ( A [,] B ) ) | 
						
							| 28 | 21 | adantr |  |-  ( ( ph /\ X < C ) -> X e. RR ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ X < C ) -> X < C ) | 
						
							| 30 | 28 29 | ltned |  |-  ( ( ph /\ X < C ) -> X =/= C ) | 
						
							| 31 |  | eldifsn |  |-  ( X e. ( ( A [,] B ) \ { C } ) <-> ( X e. ( A [,] B ) /\ X =/= C ) ) | 
						
							| 32 | 27 30 31 | sylanbrc |  |-  ( ( ph /\ X < C ) -> X e. ( ( A [,] B ) \ { C } ) ) | 
						
							| 33 |  | fveq2 |  |-  ( z = X -> ( G ` z ) = ( G ` X ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( z = X -> ( ( G ` z ) - ( G ` C ) ) = ( ( G ` X ) - ( G ` C ) ) ) | 
						
							| 35 |  | oveq1 |  |-  ( z = X -> ( z - C ) = ( X - C ) ) | 
						
							| 36 | 34 35 | oveq12d |  |-  ( z = X -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) | 
						
							| 37 |  | ovex |  |-  ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) e. _V | 
						
							| 38 | 36 13 37 | fvmpt |  |-  ( X e. ( ( A [,] B ) \ { C } ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) | 
						
							| 39 | 32 38 | syl |  |-  ( ( ph /\ X < C ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 |  |-  ( ph -> F : D --> CC ) | 
						
							| 41 | 1 2 3 4 5 6 7 40 | ftc1lem2 |  |-  ( ph -> G : ( A [,] B ) --> CC ) | 
						
							| 42 | 41 17 | ffvelcdmd |  |-  ( ph -> ( G ` X ) e. CC ) | 
						
							| 43 | 41 23 | ffvelcdmd |  |-  ( ph -> ( G ` C ) e. CC ) | 
						
							| 44 | 42 43 | subcld |  |-  ( ph -> ( ( G ` X ) - ( G ` C ) ) e. CC ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ X < C ) -> ( ( G ` X ) - ( G ` C ) ) e. CC ) | 
						
							| 46 | 21 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 47 | 24 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 48 | 46 47 | subcld |  |-  ( ph -> ( X - C ) e. CC ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ X < C ) -> ( X - C ) e. CC ) | 
						
							| 50 | 46 47 | subeq0ad |  |-  ( ph -> ( ( X - C ) = 0 <-> X = C ) ) | 
						
							| 51 | 50 | necon3bid |  |-  ( ph -> ( ( X - C ) =/= 0 <-> X =/= C ) ) | 
						
							| 52 | 51 | biimpar |  |-  ( ( ph /\ X =/= C ) -> ( X - C ) =/= 0 ) | 
						
							| 53 | 30 52 | syldan |  |-  ( ( ph /\ X < C ) -> ( X - C ) =/= 0 ) | 
						
							| 54 | 45 49 53 | div2negd |  |-  ( ( ph /\ X < C ) -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) | 
						
							| 55 | 42 43 | negsubdi2d |  |-  ( ph -> -u ( ( G ` X ) - ( G ` C ) ) = ( ( G ` C ) - ( G ` X ) ) ) | 
						
							| 56 | 46 47 | negsubdi2d |  |-  ( ph -> -u ( X - C ) = ( C - X ) ) | 
						
							| 57 | 55 56 | oveq12d |  |-  ( ph -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ X < C ) -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) | 
						
							| 59 | 39 54 58 | 3eqtr2d |  |-  ( ( ph /\ X < C ) -> ( H ` X ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) | 
						
							| 60 | 59 | fvoveq1d |  |-  ( ( ph /\ X < C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) = ( abs ` ( ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) - ( F ` C ) ) ) ) | 
						
							| 61 | 47 | subidd |  |-  ( ph -> ( C - C ) = 0 ) | 
						
							| 62 | 61 | abs00bd |  |-  ( ph -> ( abs ` ( C - C ) ) = 0 ) | 
						
							| 63 | 15 | rpgt0d |  |-  ( ph -> 0 < R ) | 
						
							| 64 | 62 63 | eqbrtrd |  |-  ( ph -> ( abs ` ( C - C ) ) < R ) | 
						
							| 65 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 | ftc1lem4 |  |-  ( ( ph /\ X < C ) -> ( abs ` ( ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) - ( F ` C ) ) ) < E ) | 
						
							| 66 | 60 65 | eqbrtrd |  |-  ( ( ph /\ X < C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) | 
						
							| 67 | 17 | adantr |  |-  ( ( ph /\ C < X ) -> X e. ( A [,] B ) ) | 
						
							| 68 | 24 | adantr |  |-  ( ( ph /\ C < X ) -> C e. RR ) | 
						
							| 69 |  | simpr |  |-  ( ( ph /\ C < X ) -> C < X ) | 
						
							| 70 | 68 69 | gtned |  |-  ( ( ph /\ C < X ) -> X =/= C ) | 
						
							| 71 | 67 70 31 | sylanbrc |  |-  ( ( ph /\ C < X ) -> X e. ( ( A [,] B ) \ { C } ) ) | 
						
							| 72 | 71 38 | syl |  |-  ( ( ph /\ C < X ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) | 
						
							| 73 | 72 | fvoveq1d |  |-  ( ( ph /\ C < X ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) = ( abs ` ( ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) - ( F ` C ) ) ) ) | 
						
							| 74 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 | ftc1lem4 |  |-  ( ( ph /\ C < X ) -> ( abs ` ( ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) - ( F ` C ) ) ) < E ) | 
						
							| 75 | 73 74 | eqbrtrd |  |-  ( ( ph /\ C < X ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) | 
						
							| 76 | 66 75 | jaodan |  |-  ( ( ph /\ ( X < C \/ C < X ) ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) | 
						
							| 77 | 26 76 | syldan |  |-  ( ( ph /\ X =/= C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |