Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1.s |
|- ( ph -> ( A (,) B ) C_ D ) |
6 |
|
ftc1.d |
|- ( ph -> D C_ RR ) |
7 |
|
ftc1.i |
|- ( ph -> F e. L^1 ) |
8 |
|
ftc1.c |
|- ( ph -> C e. ( A (,) B ) ) |
9 |
|
ftc1.f |
|- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
10 |
|
ftc1.j |
|- J = ( L |`t RR ) |
11 |
|
ftc1.k |
|- K = ( L |`t D ) |
12 |
|
ftc1.l |
|- L = ( TopOpen ` CCfld ) |
13 |
|
ftc1.h |
|- H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
14 |
|
ftc1.e |
|- ( ph -> E e. RR+ ) |
15 |
|
ftc1.r |
|- ( ph -> R e. RR+ ) |
16 |
|
ftc1.fc |
|- ( ( ph /\ y e. D ) -> ( ( abs ` ( y - C ) ) < R -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < E ) ) |
17 |
|
ftc1.x1 |
|- ( ph -> X e. ( A [,] B ) ) |
18 |
|
ftc1.x2 |
|- ( ph -> ( abs ` ( X - C ) ) < R ) |
19 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
20 |
2 3 19
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
21 |
20 17
|
sseldd |
|- ( ph -> X e. RR ) |
22 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
23 |
22 8
|
sselid |
|- ( ph -> C e. ( A [,] B ) ) |
24 |
20 23
|
sseldd |
|- ( ph -> C e. RR ) |
25 |
21 24
|
lttri2d |
|- ( ph -> ( X =/= C <-> ( X < C \/ C < X ) ) ) |
26 |
25
|
biimpa |
|- ( ( ph /\ X =/= C ) -> ( X < C \/ C < X ) ) |
27 |
17
|
adantr |
|- ( ( ph /\ X < C ) -> X e. ( A [,] B ) ) |
28 |
21
|
adantr |
|- ( ( ph /\ X < C ) -> X e. RR ) |
29 |
|
simpr |
|- ( ( ph /\ X < C ) -> X < C ) |
30 |
28 29
|
ltned |
|- ( ( ph /\ X < C ) -> X =/= C ) |
31 |
|
eldifsn |
|- ( X e. ( ( A [,] B ) \ { C } ) <-> ( X e. ( A [,] B ) /\ X =/= C ) ) |
32 |
27 30 31
|
sylanbrc |
|- ( ( ph /\ X < C ) -> X e. ( ( A [,] B ) \ { C } ) ) |
33 |
|
fveq2 |
|- ( z = X -> ( G ` z ) = ( G ` X ) ) |
34 |
33
|
oveq1d |
|- ( z = X -> ( ( G ` z ) - ( G ` C ) ) = ( ( G ` X ) - ( G ` C ) ) ) |
35 |
|
oveq1 |
|- ( z = X -> ( z - C ) = ( X - C ) ) |
36 |
34 35
|
oveq12d |
|- ( z = X -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
37 |
|
ovex |
|- ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) e. _V |
38 |
36 13 37
|
fvmpt |
|- ( X e. ( ( A [,] B ) \ { C } ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
39 |
32 38
|
syl |
|- ( ( ph /\ X < C ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
|- ( ph -> F : D --> CC ) |
41 |
1 2 3 4 5 6 7 40
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
42 |
41 17
|
ffvelrnd |
|- ( ph -> ( G ` X ) e. CC ) |
43 |
41 23
|
ffvelrnd |
|- ( ph -> ( G ` C ) e. CC ) |
44 |
42 43
|
subcld |
|- ( ph -> ( ( G ` X ) - ( G ` C ) ) e. CC ) |
45 |
44
|
adantr |
|- ( ( ph /\ X < C ) -> ( ( G ` X ) - ( G ` C ) ) e. CC ) |
46 |
21
|
recnd |
|- ( ph -> X e. CC ) |
47 |
24
|
recnd |
|- ( ph -> C e. CC ) |
48 |
46 47
|
subcld |
|- ( ph -> ( X - C ) e. CC ) |
49 |
48
|
adantr |
|- ( ( ph /\ X < C ) -> ( X - C ) e. CC ) |
50 |
46 47
|
subeq0ad |
|- ( ph -> ( ( X - C ) = 0 <-> X = C ) ) |
51 |
50
|
necon3bid |
|- ( ph -> ( ( X - C ) =/= 0 <-> X =/= C ) ) |
52 |
51
|
biimpar |
|- ( ( ph /\ X =/= C ) -> ( X - C ) =/= 0 ) |
53 |
30 52
|
syldan |
|- ( ( ph /\ X < C ) -> ( X - C ) =/= 0 ) |
54 |
45 49 53
|
div2negd |
|- ( ( ph /\ X < C ) -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
55 |
42 43
|
negsubdi2d |
|- ( ph -> -u ( ( G ` X ) - ( G ` C ) ) = ( ( G ` C ) - ( G ` X ) ) ) |
56 |
46 47
|
negsubdi2d |
|- ( ph -> -u ( X - C ) = ( C - X ) ) |
57 |
55 56
|
oveq12d |
|- ( ph -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) |
58 |
57
|
adantr |
|- ( ( ph /\ X < C ) -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) |
59 |
39 54 58
|
3eqtr2d |
|- ( ( ph /\ X < C ) -> ( H ` X ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) |
60 |
59
|
fvoveq1d |
|- ( ( ph /\ X < C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) = ( abs ` ( ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) - ( F ` C ) ) ) ) |
61 |
47
|
subidd |
|- ( ph -> ( C - C ) = 0 ) |
62 |
61
|
abs00bd |
|- ( ph -> ( abs ` ( C - C ) ) = 0 ) |
63 |
15
|
rpgt0d |
|- ( ph -> 0 < R ) |
64 |
62 63
|
eqbrtrd |
|- ( ph -> ( abs ` ( C - C ) ) < R ) |
65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64
|
ftc1lem4 |
|- ( ( ph /\ X < C ) -> ( abs ` ( ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) - ( F ` C ) ) ) < E ) |
66 |
60 65
|
eqbrtrd |
|- ( ( ph /\ X < C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
67 |
17
|
adantr |
|- ( ( ph /\ C < X ) -> X e. ( A [,] B ) ) |
68 |
24
|
adantr |
|- ( ( ph /\ C < X ) -> C e. RR ) |
69 |
|
simpr |
|- ( ( ph /\ C < X ) -> C < X ) |
70 |
68 69
|
gtned |
|- ( ( ph /\ C < X ) -> X =/= C ) |
71 |
67 70 31
|
sylanbrc |
|- ( ( ph /\ C < X ) -> X e. ( ( A [,] B ) \ { C } ) ) |
72 |
71 38
|
syl |
|- ( ( ph /\ C < X ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
73 |
72
|
fvoveq1d |
|- ( ( ph /\ C < X ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) = ( abs ` ( ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) - ( F ` C ) ) ) ) |
74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18
|
ftc1lem4 |
|- ( ( ph /\ C < X ) -> ( abs ` ( ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) - ( F ` C ) ) ) < E ) |
75 |
73 74
|
eqbrtrd |
|- ( ( ph /\ C < X ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
76 |
66 75
|
jaodan |
|- ( ( ph /\ ( X < C \/ C < X ) ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
77 |
26 76
|
syldan |
|- ( ( ph /\ X =/= C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |