| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  |-  G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) | 
						
							| 2 |  | ftc1.a |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | ftc1.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | ftc1.le |  |-  ( ph -> A <_ B ) | 
						
							| 5 |  | ftc1.s |  |-  ( ph -> ( A (,) B ) C_ D ) | 
						
							| 6 |  | ftc1.d |  |-  ( ph -> D C_ RR ) | 
						
							| 7 |  | ftc1.i |  |-  ( ph -> F e. L^1 ) | 
						
							| 8 |  | ftc1.c |  |-  ( ph -> C e. ( A (,) B ) ) | 
						
							| 9 |  | ftc1.f |  |-  ( ph -> F e. ( ( K CnP L ) ` C ) ) | 
						
							| 10 |  | ftc1.j |  |-  J = ( L |`t RR ) | 
						
							| 11 |  | ftc1.k |  |-  K = ( L |`t D ) | 
						
							| 12 |  | ftc1.l |  |-  L = ( TopOpen ` CCfld ) | 
						
							| 13 |  | ftc1.h |  |-  H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 |  |-  ( ph -> F : D --> CC ) | 
						
							| 15 | 5 8 | sseldd |  |-  ( ph -> C e. D ) | 
						
							| 16 | 14 15 | ffvelcdmd |  |-  ( ph -> ( F ` C ) e. CC ) | 
						
							| 17 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 18 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 19 | 6 18 | sstrdi |  |-  ( ph -> D C_ CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ w e. RR+ ) -> D C_ CC ) | 
						
							| 21 |  | xmetres2 |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ D C_ CC ) -> ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) ) | 
						
							| 22 | 17 20 21 | sylancr |  |-  ( ( ph /\ w e. RR+ ) -> ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) ) | 
						
							| 23 | 17 | a1i |  |-  ( ( ph /\ w e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 24 |  | eqid |  |-  ( ( abs o. - ) |` ( D X. D ) ) = ( ( abs o. - ) |` ( D X. D ) ) | 
						
							| 25 | 12 | cnfldtopn |  |-  L = ( MetOpen ` ( abs o. - ) ) | 
						
							| 26 |  | eqid |  |-  ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) | 
						
							| 27 | 24 25 26 | metrest |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ D C_ CC ) -> ( L |`t D ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) | 
						
							| 28 | 17 19 27 | sylancr |  |-  ( ph -> ( L |`t D ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) | 
						
							| 29 | 11 28 | eqtrid |  |-  ( ph -> K = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ph -> ( K CnP L ) = ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ) | 
						
							| 31 | 30 | fveq1d |  |-  ( ph -> ( ( K CnP L ) ` C ) = ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) | 
						
							| 32 | 9 31 | eleqtrd |  |-  ( ph -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ w e. RR+ ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ w e. RR+ ) -> w e. RR+ ) | 
						
							| 35 | 26 25 | metcnpi2 |  |-  ( ( ( ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) /\ ( abs o. - ) e. ( *Met ` CC ) ) /\ ( F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) /\ w e. RR+ ) ) -> E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) ) | 
						
							| 36 | 22 23 33 34 35 | syl22anc |  |-  ( ( ph /\ w e. RR+ ) -> E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> y e. D ) | 
						
							| 38 | 15 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> C e. D ) | 
						
							| 39 | 37 38 | ovresd |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( ( abs o. - ) |` ( D X. D ) ) C ) = ( y ( abs o. - ) C ) ) | 
						
							| 40 | 19 | adantr |  |-  ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> D C_ CC ) | 
						
							| 41 | 40 | sselda |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> y e. CC ) | 
						
							| 42 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 43 | 2 3 42 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 44 | 43 18 | sstrdi |  |-  ( ph -> ( A [,] B ) C_ CC ) | 
						
							| 45 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 46 | 45 8 | sselid |  |-  ( ph -> C e. ( A [,] B ) ) | 
						
							| 47 | 44 46 | sseldd |  |-  ( ph -> C e. CC ) | 
						
							| 48 | 47 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> C e. CC ) | 
						
							| 49 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 50 | 49 | cnmetdval |  |-  ( ( y e. CC /\ C e. CC ) -> ( y ( abs o. - ) C ) = ( abs ` ( y - C ) ) ) | 
						
							| 51 | 41 48 50 | syl2anc |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( abs o. - ) C ) = ( abs ` ( y - C ) ) ) | 
						
							| 52 | 39 51 | eqtrd |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( ( abs o. - ) |` ( D X. D ) ) C ) = ( abs ` ( y - C ) ) ) | 
						
							| 53 | 52 | breq1d |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v <-> ( abs ` ( y - C ) ) < v ) ) | 
						
							| 54 | 14 | adantr |  |-  ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> F : D --> CC ) | 
						
							| 55 | 54 | ffvelcdmda |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( F ` y ) e. CC ) | 
						
							| 56 | 16 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( F ` C ) e. CC ) | 
						
							| 57 | 49 | cnmetdval |  |-  ( ( ( F ` y ) e. CC /\ ( F ` C ) e. CC ) -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) = ( abs ` ( ( F ` y ) - ( F ` C ) ) ) ) | 
						
							| 58 | 55 56 57 | syl2anc |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) = ( abs ` ( ( F ` y ) - ( F ` C ) ) ) ) | 
						
							| 59 | 58 | breq1d |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w <-> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) | 
						
							| 60 | 53 59 | imbi12d |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) <-> ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 61 | 60 | ralbidva |  |-  ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) <-> A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 62 |  | simprll |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s e. ( ( A [,] B ) \ { C } ) ) | 
						
							| 63 |  | eldifsni |  |-  ( s e. ( ( A [,] B ) \ { C } ) -> s =/= C ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s =/= C ) | 
						
							| 65 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A e. RR ) | 
						
							| 66 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> B e. RR ) | 
						
							| 67 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A <_ B ) | 
						
							| 68 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( A (,) B ) C_ D ) | 
						
							| 69 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> D C_ RR ) | 
						
							| 70 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> F e. L^1 ) | 
						
							| 71 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> C e. ( A (,) B ) ) | 
						
							| 72 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> F e. ( ( K CnP L ) ` C ) ) | 
						
							| 73 |  | simplrl |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> w e. RR+ ) | 
						
							| 74 |  | simplrr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> v e. RR+ ) | 
						
							| 75 |  | simprlr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) | 
						
							| 76 |  | fvoveq1 |  |-  ( y = u -> ( abs ` ( y - C ) ) = ( abs ` ( u - C ) ) ) | 
						
							| 77 | 76 | breq1d |  |-  ( y = u -> ( ( abs ` ( y - C ) ) < v <-> ( abs ` ( u - C ) ) < v ) ) | 
						
							| 78 | 77 | imbrov2fvoveq |  |-  ( y = u -> ( ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) <-> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 79 | 78 | rspccva |  |-  ( ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) /\ u e. D ) -> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) | 
						
							| 80 | 75 79 | sylan |  |-  ( ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) /\ u e. D ) -> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) | 
						
							| 81 | 62 | eldifad |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s e. ( A [,] B ) ) | 
						
							| 82 |  | simprr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( abs ` ( s - C ) ) < v ) | 
						
							| 83 | 1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82 | ftc1lem5 |  |-  ( ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) /\ s =/= C ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) | 
						
							| 84 | 64 83 | mpdan |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) | 
						
							| 85 | 84 | expr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) -> ( ( abs ` ( s - C ) ) < v -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) | 
						
							| 86 | 85 | adantld |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) -> ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) | 
						
							| 87 | 86 | expr |  |-  ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ s e. ( ( A [,] B ) \ { C } ) ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) -> ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 88 | 87 | ralrimdva |  |-  ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 89 | 61 88 | sylbid |  |-  ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 90 | 89 | anassrs |  |-  ( ( ( ph /\ w e. RR+ ) /\ v e. RR+ ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 91 | 90 | reximdva |  |-  ( ( ph /\ w e. RR+ ) -> ( E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) | 
						
							| 92 | 36 91 | mpd |  |-  ( ( ph /\ w e. RR+ ) -> E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) | 
						
							| 93 | 92 | ralrimiva |  |-  ( ph -> A. w e. RR+ E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) | 
						
							| 94 | 1 2 3 4 5 6 7 14 | ftc1lem2 |  |-  ( ph -> G : ( A [,] B ) --> CC ) | 
						
							| 95 | 94 44 46 | dvlem |  |-  ( ( ph /\ z e. ( ( A [,] B ) \ { C } ) ) -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) e. CC ) | 
						
							| 96 | 95 13 | fmptd |  |-  ( ph -> H : ( ( A [,] B ) \ { C } ) --> CC ) | 
						
							| 97 | 44 | ssdifssd |  |-  ( ph -> ( ( A [,] B ) \ { C } ) C_ CC ) | 
						
							| 98 | 96 97 47 | ellimc3 |  |-  ( ph -> ( ( F ` C ) e. ( H limCC C ) <-> ( ( F ` C ) e. CC /\ A. w e. RR+ E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) ) | 
						
							| 99 | 16 93 98 | mpbir2and |  |-  ( ph -> ( F ` C ) e. ( H limCC C ) ) |