| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc2.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ftc2.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ftc2.le |  |-  ( ph -> A <_ B ) | 
						
							| 4 |  | ftc2.c |  |-  ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 5 |  | ftc2.i |  |-  ( ph -> ( RR _D F ) e. L^1 ) | 
						
							| 6 |  | ftc2.f |  |-  ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 7 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 8 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 9 |  | ubicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) | 
						
							| 10 | 7 8 3 9 | syl3anc |  |-  ( ph -> B e. ( A [,] B ) ) | 
						
							| 11 |  | fvex |  |-  ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) e. _V | 
						
							| 12 | 11 | fvconst2 |  |-  ( B e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) | 
						
							| 14 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 15 | 14 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 17 |  | eqid |  |-  ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 18 |  | ssidd |  |-  ( ph -> ( A (,) B ) C_ ( A (,) B ) ) | 
						
							| 19 |  | ioossre |  |-  ( A (,) B ) C_ RR | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ( A (,) B ) C_ RR ) | 
						
							| 21 |  | cncff |  |-  ( ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) -> ( RR _D F ) : ( A (,) B ) --> CC ) | 
						
							| 22 | 4 21 | syl |  |-  ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) | 
						
							| 23 | 17 1 2 3 18 20 5 22 | ftc1a |  |-  ( ph -> ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 24 |  | cncff |  |-  ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) | 
						
							| 25 | 6 24 | syl |  |-  ( ph -> F : ( A [,] B ) --> CC ) | 
						
							| 26 | 25 | feqmptd |  |-  ( ph -> F = ( x e. ( A [,] B ) |-> ( F ` x ) ) ) | 
						
							| 27 | 26 6 | eqeltrrd |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 28 | 14 16 23 27 | cncfmpt2f |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 29 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 30 | 29 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 31 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 32 | 1 2 31 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 33 |  | fvex |  |-  ( ( RR _D F ) ` t ) e. _V | 
						
							| 34 | 33 | a1i |  |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) x ) ) -> ( ( RR _D F ) ` t ) e. _V ) | 
						
							| 35 | 2 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) | 
						
							| 36 | 35 | rexrd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) | 
						
							| 37 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) | 
						
							| 38 | 1 2 37 | syl2anc |  |-  ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) | 
						
							| 39 | 38 | biimpa |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) | 
						
							| 40 | 39 | simp3d |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) | 
						
							| 41 |  | iooss2 |  |-  ( ( B e. RR* /\ x <_ B ) -> ( A (,) x ) C_ ( A (,) B ) ) | 
						
							| 42 | 36 40 41 | syl2anc |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ ( A (,) B ) ) | 
						
							| 43 |  | ioombl |  |-  ( A (,) x ) e. dom vol | 
						
							| 44 | 43 | a1i |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) e. dom vol ) | 
						
							| 45 | 33 | a1i |  |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) | 
						
							| 46 | 22 | feqmptd |  |-  ( ph -> ( RR _D F ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) | 
						
							| 47 | 46 5 | eqeltrrd |  |-  ( ph -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) | 
						
							| 49 | 42 44 45 48 | iblss |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) x ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) | 
						
							| 50 | 34 49 | itgcl |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) | 
						
							| 51 | 25 | ffvelcdmda |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) | 
						
							| 52 | 50 51 | subcld |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) e. CC ) | 
						
							| 53 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 54 |  | iccntr |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) | 
						
							| 55 | 1 2 54 | syl2anc |  |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) | 
						
							| 56 | 30 32 52 53 14 55 | dvmptntr |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) ) | 
						
							| 57 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 58 | 57 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 59 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 60 | 59 | sseli |  |-  ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) | 
						
							| 61 | 60 50 | sylan2 |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) | 
						
							| 62 | 22 | ffvelcdmda |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) | 
						
							| 63 | 17 1 2 3 4 5 | ftc1cn |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D F ) ) | 
						
							| 64 | 30 32 50 53 14 55 | dvmptntr |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) ) | 
						
							| 65 | 22 | feqmptd |  |-  ( ph -> ( RR _D F ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) | 
						
							| 66 | 63 64 65 | 3eqtr3d |  |-  ( ph -> ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) | 
						
							| 67 | 60 51 | sylan2 |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) | 
						
							| 68 | 30 32 51 53 14 55 | dvmptntr |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) ) | 
						
							| 69 | 26 | oveq2d |  |-  ( ph -> ( RR _D F ) = ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) ) | 
						
							| 70 | 69 65 | eqtr3d |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) | 
						
							| 71 | 68 70 | eqtr3d |  |-  ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) | 
						
							| 72 | 58 61 62 66 67 62 71 | dvmptsub |  |-  ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) ) | 
						
							| 73 | 62 | subidd |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) = 0 ) | 
						
							| 74 | 73 | mpteq2dva |  |-  ( ph -> ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) | 
						
							| 75 | 56 72 74 | 3eqtrd |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) | 
						
							| 76 |  | fconstmpt |  |-  ( ( A (,) B ) X. { 0 } ) = ( x e. ( A (,) B ) |-> 0 ) | 
						
							| 77 | 75 76 | eqtr4di |  |-  ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( ( A (,) B ) X. { 0 } ) ) | 
						
							| 78 | 1 2 28 77 | dveq0 |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ) | 
						
							| 79 | 78 | fveq1d |  |-  ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) ) | 
						
							| 80 |  | oveq2 |  |-  ( x = B -> ( A (,) x ) = ( A (,) B ) ) | 
						
							| 81 |  | itgeq1 |  |-  ( ( A (,) x ) = ( A (,) B ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 82 | 80 81 | syl |  |-  ( x = B -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 83 |  | fveq2 |  |-  ( x = B -> ( F ` x ) = ( F ` B ) ) | 
						
							| 84 | 82 83 | oveq12d |  |-  ( x = B -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) | 
						
							| 85 |  | eqid |  |-  ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) | 
						
							| 86 |  | ovex |  |-  ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) e. _V | 
						
							| 87 | 84 85 86 | fvmpt |  |-  ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) | 
						
							| 88 | 10 87 | syl |  |-  ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) | 
						
							| 89 | 79 88 | eqtr3d |  |-  ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) | 
						
							| 90 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 91 | 7 8 3 90 | syl3anc |  |-  ( ph -> A e. ( A [,] B ) ) | 
						
							| 92 |  | oveq2 |  |-  ( x = A -> ( A (,) x ) = ( A (,) A ) ) | 
						
							| 93 |  | iooid |  |-  ( A (,) A ) = (/) | 
						
							| 94 | 92 93 | eqtrdi |  |-  ( x = A -> ( A (,) x ) = (/) ) | 
						
							| 95 |  | itgeq1 |  |-  ( ( A (,) x ) = (/) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 96 | 94 95 | syl |  |-  ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 97 |  | itg0 |  |-  S. (/) ( ( RR _D F ) ` t ) _d t = 0 | 
						
							| 98 | 96 97 | eqtrdi |  |-  ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = 0 ) | 
						
							| 99 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 100 | 98 99 | oveq12d |  |-  ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( 0 - ( F ` A ) ) ) | 
						
							| 101 |  | df-neg |  |-  -u ( F ` A ) = ( 0 - ( F ` A ) ) | 
						
							| 102 | 100 101 | eqtr4di |  |-  ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = -u ( F ` A ) ) | 
						
							| 103 |  | negex |  |-  -u ( F ` A ) e. _V | 
						
							| 104 | 102 85 103 | fvmpt |  |-  ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) | 
						
							| 105 | 91 104 | syl |  |-  ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) | 
						
							| 106 | 13 89 105 | 3eqtr3d |  |-  ( ph -> ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) = -u ( F ` A ) ) | 
						
							| 107 | 106 | oveq2d |  |-  ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = ( ( F ` B ) + -u ( F ` A ) ) ) | 
						
							| 108 | 25 10 | ffvelcdmd |  |-  ( ph -> ( F ` B ) e. CC ) | 
						
							| 109 | 33 | a1i |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) | 
						
							| 110 | 109 47 | itgcl |  |-  ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t e. CC ) | 
						
							| 111 | 108 110 | pncan3d |  |-  ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 112 | 25 91 | ffvelcdmd |  |-  ( ph -> ( F ` A ) e. CC ) | 
						
							| 113 | 108 112 | negsubd |  |-  ( ph -> ( ( F ` B ) + -u ( F ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 114 | 107 111 113 | 3eqtr3d |  |-  ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |