Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2ditg.x |
|- ( ph -> X e. RR ) |
2 |
|
ftc2ditg.y |
|- ( ph -> Y e. RR ) |
3 |
|
ftc2ditg.a |
|- ( ph -> A e. ( X [,] Y ) ) |
4 |
|
ftc2ditg.b |
|- ( ph -> B e. ( X [,] Y ) ) |
5 |
|
ftc2ditg.c |
|- ( ph -> ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) ) |
6 |
|
ftc2ditg.i |
|- ( ph -> ( RR _D F ) e. L^1 ) |
7 |
|
ftc2ditg.f |
|- ( ph -> F e. ( ( X [,] Y ) -cn-> CC ) ) |
8 |
|
iccssre |
|- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( X [,] Y ) C_ RR ) |
10 |
9 3
|
sseldd |
|- ( ph -> A e. RR ) |
11 |
9 4
|
sseldd |
|- ( ph -> B e. RR ) |
12 |
1 2 3 4 5 6 7
|
ftc2ditglem |
|- ( ( ph /\ A <_ B ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
13 |
|
fvexd |
|- ( ( ph /\ t e. ( X (,) Y ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
14 |
|
cncff |
|- ( ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
15 |
5 14
|
syl |
|- ( ph -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
16 |
15
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) ) |
17 |
16 6
|
eqeltrrd |
|- ( ph -> ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
18 |
1 2 4 3 13 17
|
ditgswap |
|- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t ) |
19 |
18
|
adantr |
|- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t ) |
20 |
1 2 4 3 5 6 7
|
ftc2ditglem |
|- ( ( ph /\ B <_ A ) -> S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t = ( ( F ` A ) - ( F ` B ) ) ) |
21 |
20
|
negeqd |
|- ( ( ph /\ B <_ A ) -> -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t = -u ( ( F ` A ) - ( F ` B ) ) ) |
22 |
|
cncff |
|- ( F e. ( ( X [,] Y ) -cn-> CC ) -> F : ( X [,] Y ) --> CC ) |
23 |
7 22
|
syl |
|- ( ph -> F : ( X [,] Y ) --> CC ) |
24 |
23 3
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. CC ) |
25 |
23 4
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. CC ) |
26 |
24 25
|
negsubdi2d |
|- ( ph -> -u ( ( F ` A ) - ( F ` B ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ B <_ A ) -> -u ( ( F ` A ) - ( F ` B ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
28 |
19 21 27
|
3eqtrd |
|- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
29 |
10 11 12 28
|
lecasei |
|- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |