Step |
Hyp |
Ref |
Expression |
1 |
|
fthmon.b |
|- B = ( Base ` C ) |
2 |
|
fthmon.h |
|- H = ( Hom ` C ) |
3 |
|
fthmon.f |
|- ( ph -> F ( C Faith D ) G ) |
4 |
|
fthmon.x |
|- ( ph -> X e. B ) |
5 |
|
fthmon.y |
|- ( ph -> Y e. B ) |
6 |
|
fthmon.r |
|- ( ph -> R e. ( X H Y ) ) |
7 |
|
fthepi.e |
|- E = ( Epi ` C ) |
8 |
|
fthepi.p |
|- P = ( Epi ` D ) |
9 |
|
fthepi.1 |
|- ( ph -> ( ( X G Y ) ` R ) e. ( ( F ` X ) P ( F ` Y ) ) ) |
10 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
11 |
10 1
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
12 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
13 |
|
eqid |
|- ( oppCat ` D ) = ( oppCat ` D ) |
14 |
10 13 3
|
fthoppc |
|- ( ph -> F ( ( oppCat ` C ) Faith ( oppCat ` D ) ) tpos G ) |
15 |
2 10
|
oppchom |
|- ( Y ( Hom ` ( oppCat ` C ) ) X ) = ( X H Y ) |
16 |
6 15
|
eleqtrrdi |
|- ( ph -> R e. ( Y ( Hom ` ( oppCat ` C ) ) X ) ) |
17 |
|
eqid |
|- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
18 |
|
eqid |
|- ( Mono ` ( oppCat ` D ) ) = ( Mono ` ( oppCat ` D ) ) |
19 |
|
ovtpos |
|- ( Y tpos G X ) = ( X G Y ) |
20 |
19
|
fveq1i |
|- ( ( Y tpos G X ) ` R ) = ( ( X G Y ) ` R ) |
21 |
20 9
|
eqeltrid |
|- ( ph -> ( ( Y tpos G X ) ` R ) e. ( ( F ` X ) P ( F ` Y ) ) ) |
22 |
|
fthfunc |
|- ( C Faith D ) C_ ( C Func D ) |
23 |
22
|
ssbri |
|- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
24 |
3 23
|
syl |
|- ( ph -> F ( C Func D ) G ) |
25 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
26 |
24 25
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
27 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
28 |
26 27
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
29 |
28
|
simprd |
|- ( ph -> D e. Cat ) |
30 |
13 29 18 8
|
oppcmon |
|- ( ph -> ( ( F ` Y ) ( Mono ` ( oppCat ` D ) ) ( F ` X ) ) = ( ( F ` X ) P ( F ` Y ) ) ) |
31 |
21 30
|
eleqtrrd |
|- ( ph -> ( ( Y tpos G X ) ` R ) e. ( ( F ` Y ) ( Mono ` ( oppCat ` D ) ) ( F ` X ) ) ) |
32 |
11 12 14 5 4 16 17 18 31
|
fthmon |
|- ( ph -> R e. ( Y ( Mono ` ( oppCat ` C ) ) X ) ) |
33 |
28
|
simpld |
|- ( ph -> C e. Cat ) |
34 |
10 33 17 7
|
oppcmon |
|- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
35 |
32 34
|
eleqtrd |
|- ( ph -> R e. ( X E Y ) ) |