| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfth.b |
|- B = ( Base ` C ) |
| 2 |
|
isfth.h |
|- H = ( Hom ` C ) |
| 3 |
|
isfth.j |
|- J = ( Hom ` D ) |
| 4 |
|
fthf1.f |
|- ( ph -> F ( C Faith D ) G ) |
| 5 |
|
fthf1.x |
|- ( ph -> X e. B ) |
| 6 |
|
fthf1.y |
|- ( ph -> Y e. B ) |
| 7 |
|
fthi.r |
|- ( ph -> R e. ( X H Y ) ) |
| 8 |
|
fthi.s |
|- ( ph -> S e. ( X H Y ) ) |
| 9 |
1 2 3 4 5 6
|
fthf1 |
|- ( ph -> ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) ) |
| 10 |
|
f1fveq |
|- ( ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( R e. ( X H Y ) /\ S e. ( X H Y ) ) ) -> ( ( ( X G Y ) ` R ) = ( ( X G Y ) ` S ) <-> R = S ) ) |
| 11 |
9 7 8 10
|
syl12anc |
|- ( ph -> ( ( ( X G Y ) ` R ) = ( ( X G Y ) ` S ) <-> R = S ) ) |