Step |
Hyp |
Ref |
Expression |
1 |
|
fthsect.b |
|- B = ( Base ` C ) |
2 |
|
fthsect.h |
|- H = ( Hom ` C ) |
3 |
|
fthsect.f |
|- ( ph -> F ( C Faith D ) G ) |
4 |
|
fthsect.x |
|- ( ph -> X e. B ) |
5 |
|
fthsect.y |
|- ( ph -> Y e. B ) |
6 |
|
fthsect.m |
|- ( ph -> M e. ( X H Y ) ) |
7 |
|
fthsect.n |
|- ( ph -> N e. ( Y H X ) ) |
8 |
|
fthinv.s |
|- I = ( Inv ` C ) |
9 |
|
fthinv.t |
|- J = ( Inv ` D ) |
10 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
11 |
|
eqid |
|- ( Sect ` D ) = ( Sect ` D ) |
12 |
1 2 3 4 5 6 7 10 11
|
fthsect |
|- ( ph -> ( M ( X ( Sect ` C ) Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` D ) ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |
13 |
1 2 3 5 4 7 6 10 11
|
fthsect |
|- ( ph -> ( N ( Y ( Sect ` C ) X ) M <-> ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) |
14 |
12 13
|
anbi12d |
|- ( ph -> ( ( M ( X ( Sect ` C ) Y ) N /\ N ( Y ( Sect ` C ) X ) M ) <-> ( ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` D ) ( F ` Y ) ) ( ( Y G X ) ` N ) /\ ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) ) |
15 |
|
fthfunc |
|- ( C Faith D ) C_ ( C Func D ) |
16 |
15
|
ssbri |
|- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
17 |
3 16
|
syl |
|- ( ph -> F ( C Func D ) G ) |
18 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
19 |
17 18
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
20 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
21 |
19 20
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
22 |
21
|
simpld |
|- ( ph -> C e. Cat ) |
23 |
1 8 22 4 5 10
|
isinv |
|- ( ph -> ( M ( X I Y ) N <-> ( M ( X ( Sect ` C ) Y ) N /\ N ( Y ( Sect ` C ) X ) M ) ) ) |
24 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
25 |
21
|
simprd |
|- ( ph -> D e. Cat ) |
26 |
1 24 17
|
funcf1 |
|- ( ph -> F : B --> ( Base ` D ) ) |
27 |
26 4
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
28 |
26 5
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. ( Base ` D ) ) |
29 |
24 9 25 27 28 11
|
isinv |
|- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` D ) ( F ` Y ) ) ( ( Y G X ) ` N ) /\ ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) ) |
30 |
14 23 29
|
3bitr4d |
|- ( ph -> ( M ( X I Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |