| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulloppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fulloppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fthoppc.f |
|- ( ph -> F ( C Faith D ) G ) |
| 4 |
|
fthfunc |
|- ( C Faith D ) C_ ( C Func D ) |
| 5 |
4
|
ssbri |
|- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
| 6 |
3 5
|
syl |
|- ( ph -> F ( C Func D ) G ) |
| 7 |
1 2 6
|
funcoppc |
|- ( ph -> F ( O Func P ) tpos G ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 10 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F ( C Faith D ) G ) |
| 12 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 13 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 14 |
8 9 10 11 12 13
|
fthf1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( y G x ) : ( y ( Hom ` C ) x ) -1-1-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 15 |
|
df-f1 |
|- ( ( y G x ) : ( y ( Hom ` C ) x ) -1-1-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) <-> ( ( y G x ) : ( y ( Hom ` C ) x ) --> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) /\ Fun `' ( y G x ) ) ) |
| 16 |
15
|
simprbi |
|- ( ( y G x ) : ( y ( Hom ` C ) x ) -1-1-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) -> Fun `' ( y G x ) ) |
| 17 |
14 16
|
syl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> Fun `' ( y G x ) ) |
| 18 |
|
ovtpos |
|- ( x tpos G y ) = ( y G x ) |
| 19 |
18
|
cnveqi |
|- `' ( x tpos G y ) = `' ( y G x ) |
| 20 |
19
|
funeqi |
|- ( Fun `' ( x tpos G y ) <-> Fun `' ( y G x ) ) |
| 21 |
17 20
|
sylibr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> Fun `' ( x tpos G y ) ) |
| 22 |
21
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x tpos G y ) ) |
| 23 |
1 8
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 24 |
23
|
isfth |
|- ( F ( O Faith P ) tpos G <-> ( F ( O Func P ) tpos G /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x tpos G y ) ) ) |
| 25 |
7 22 24
|
sylanbrc |
|- ( ph -> F ( O Faith P ) tpos G ) |