Step |
Hyp |
Ref |
Expression |
1 |
|
fullpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
2 |
|
fullpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
3 |
|
fullpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
4 |
|
fullpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
5 |
|
fullpropd.a |
|- ( ph -> A e. V ) |
6 |
|
fullpropd.b |
|- ( ph -> B e. V ) |
7 |
|
fullpropd.c |
|- ( ph -> C e. V ) |
8 |
|
fullpropd.d |
|- ( ph -> D e. V ) |
9 |
|
relfth |
|- Rel ( A Faith C ) |
10 |
|
relfth |
|- Rel ( B Faith D ) |
11 |
1 2 3 4 5 6 7 8
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
12 |
11
|
breqd |
|- ( ph -> ( f ( A Func C ) g <-> f ( B Func D ) g ) ) |
13 |
1
|
homfeqbas |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
14 |
13
|
raleqdv |
|- ( ph -> ( A. y e. ( Base ` A ) Fun `' ( x g y ) <-> A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) |
15 |
13 14
|
raleqbidv |
|- ( ph -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) Fun `' ( x g y ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) |
16 |
12 15
|
anbi12d |
|- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) Fun `' ( x g y ) ) <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) ) |
17 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
18 |
17
|
isfth |
|- ( f ( A Faith C ) g <-> ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) Fun `' ( x g y ) ) ) |
19 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
20 |
19
|
isfth |
|- ( f ( B Faith D ) g <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) |
21 |
16 18 20
|
3bitr4g |
|- ( ph -> ( f ( A Faith C ) g <-> f ( B Faith D ) g ) ) |
22 |
9 10 21
|
eqbrrdiv |
|- ( ph -> ( A Faith C ) = ( B Faith D ) ) |