| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relfth | 
							 |-  Rel ( C Faith ( D |`cat R ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							 |-  ( R e. ( Subcat ` D ) -> Rel ( C Faith ( D |`cat R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							funcres2 | 
							 |-  ( R e. ( Subcat ` D ) -> ( C Func ( D |`cat R ) ) C_ ( C Func D ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ssbrd | 
							 |-  ( R e. ( Subcat ` D ) -> ( f ( C Func ( D |`cat R ) ) g -> f ( C Func D ) g ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							anim1d | 
							 |-  ( R e. ( Subcat ` D ) -> ( ( f ( C Func ( D |`cat R ) ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) -> ( f ( C Func D ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 7 | 
							
								6
							 | 
							isfth | 
							 |-  ( f ( C Faith ( D |`cat R ) ) g <-> ( f ( C Func ( D |`cat R ) ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) )  | 
						
						
							| 8 | 
							
								6
							 | 
							isfth | 
							 |-  ( f ( C Faith D ) g <-> ( f ( C Func D ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) )  | 
						
						
							| 9 | 
							
								5 7 8
							 | 
							3imtr4g | 
							 |-  ( R e. ( Subcat ` D ) -> ( f ( C Faith ( D |`cat R ) ) g -> f ( C Faith D ) g ) )  | 
						
						
							| 10 | 
							
								
							 | 
							df-br | 
							 |-  ( f ( C Faith ( D |`cat R ) ) g <-> <. f , g >. e. ( C Faith ( D |`cat R ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							df-br | 
							 |-  ( f ( C Faith D ) g <-> <. f , g >. e. ( C Faith D ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3imtr3g | 
							 |-  ( R e. ( Subcat ` D ) -> ( <. f , g >. e. ( C Faith ( D |`cat R ) ) -> <. f , g >. e. ( C Faith D ) ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							relssdv | 
							 |-  ( R e. ( Subcat ` D ) -> ( C Faith ( D |`cat R ) ) C_ ( C Faith D ) )  |