Step |
Hyp |
Ref |
Expression |
1 |
|
relfth |
|- Rel ( C Faith ( D |`cat R ) ) |
2 |
1
|
a1i |
|- ( R e. ( Subcat ` D ) -> Rel ( C Faith ( D |`cat R ) ) ) |
3 |
|
funcres2 |
|- ( R e. ( Subcat ` D ) -> ( C Func ( D |`cat R ) ) C_ ( C Func D ) ) |
4 |
3
|
ssbrd |
|- ( R e. ( Subcat ` D ) -> ( f ( C Func ( D |`cat R ) ) g -> f ( C Func D ) g ) ) |
5 |
4
|
anim1d |
|- ( R e. ( Subcat ` D ) -> ( ( f ( C Func ( D |`cat R ) ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) -> ( f ( C Func D ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) ) |
6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
7 |
6
|
isfth |
|- ( f ( C Faith ( D |`cat R ) ) g <-> ( f ( C Func ( D |`cat R ) ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) |
8 |
6
|
isfth |
|- ( f ( C Faith D ) g <-> ( f ( C Func D ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) |
9 |
5 7 8
|
3imtr4g |
|- ( R e. ( Subcat ` D ) -> ( f ( C Faith ( D |`cat R ) ) g -> f ( C Faith D ) g ) ) |
10 |
|
df-br |
|- ( f ( C Faith ( D |`cat R ) ) g <-> <. f , g >. e. ( C Faith ( D |`cat R ) ) ) |
11 |
|
df-br |
|- ( f ( C Faith D ) g <-> <. f , g >. e. ( C Faith D ) ) |
12 |
9 10 11
|
3imtr3g |
|- ( R e. ( Subcat ` D ) -> ( <. f , g >. e. ( C Faith ( D |`cat R ) ) -> <. f , g >. e. ( C Faith D ) ) ) |
13 |
2 12
|
relssdv |
|- ( R e. ( Subcat ` D ) -> ( C Faith ( D |`cat R ) ) C_ ( C Faith D ) ) |