Step |
Hyp |
Ref |
Expression |
1 |
|
fthres2c.a |
|- A = ( Base ` C ) |
2 |
|
fthres2c.e |
|- E = ( D |`s S ) |
3 |
|
fthres2c.d |
|- ( ph -> D e. Cat ) |
4 |
|
fthres2c.r |
|- ( ph -> S e. V ) |
5 |
|
fthres2c.1 |
|- ( ph -> F : A --> S ) |
6 |
1 2 3 4 5
|
funcres2c |
|- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
7 |
6
|
anbi1d |
|- ( ph -> ( ( F ( C Func D ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) ) |
8 |
1
|
isfth |
|- ( F ( C Faith D ) G <-> ( F ( C Func D ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) |
9 |
1
|
isfth |
|- ( F ( C Faith E ) G <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) |
10 |
7 8 9
|
3bitr4g |
|- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) ) |