Metamath Proof Explorer


Theorem ftp

Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by Alexander van der Vekens, 23-Jan-2018)

Ref Expression
Hypotheses ftp.a
|- A e. _V
ftp.b
|- B e. _V
ftp.c
|- C e. _V
ftp.d
|- X e. _V
ftp.e
|- Y e. _V
ftp.f
|- Z e. _V
ftp.g
|- A =/= B
ftp.h
|- A =/= C
ftp.i
|- B =/= C
Assertion ftp
|- { <. A , X >. , <. B , Y >. , <. C , Z >. } : { A , B , C } --> { X , Y , Z }

Proof

Step Hyp Ref Expression
1 ftp.a
 |-  A e. _V
2 ftp.b
 |-  B e. _V
3 ftp.c
 |-  C e. _V
4 ftp.d
 |-  X e. _V
5 ftp.e
 |-  Y e. _V
6 ftp.f
 |-  Z e. _V
7 ftp.g
 |-  A =/= B
8 ftp.h
 |-  A =/= C
9 ftp.i
 |-  B =/= C
10 1 2 3 3pm3.2i
 |-  ( A e. _V /\ B e. _V /\ C e. _V )
11 4 5 6 3pm3.2i
 |-  ( X e. _V /\ Y e. _V /\ Z e. _V )
12 7 8 9 3pm3.2i
 |-  ( A =/= B /\ A =/= C /\ B =/= C )
13 ftpg
 |-  ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( X e. _V /\ Y e. _V /\ Z e. _V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> { <. A , X >. , <. B , Y >. , <. C , Z >. } : { A , B , C } --> { X , Y , Z } )
14 10 11 12 13 mp3an
 |-  { <. A , X >. , <. B , Y >. , <. C , Z >. } : { A , B , C } --> { X , Y , Z }