Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by Alexander van der Vekens, 23-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftp.a | |- A e. _V | |
| ftp.b | |- B e. _V | ||
| ftp.c | |- C e. _V | ||
| ftp.d | |- X e. _V | ||
| ftp.e | |- Y e. _V | ||
| ftp.f | |- Z e. _V | ||
| ftp.g | |- A =/= B | ||
| ftp.h | |- A =/= C | ||
| ftp.i | |- B =/= C | ||
| Assertion | ftp | |- { <. A , X >. , <. B , Y >. , <. C , Z >. } : { A , B , C } --> { X , Y , Z } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ftp.a | |- A e. _V | |
| 2 | ftp.b | |- B e. _V | |
| 3 | ftp.c | |- C e. _V | |
| 4 | ftp.d | |- X e. _V | |
| 5 | ftp.e | |- Y e. _V | |
| 6 | ftp.f | |- Z e. _V | |
| 7 | ftp.g | |- A =/= B | |
| 8 | ftp.h | |- A =/= C | |
| 9 | ftp.i | |- B =/= C | |
| 10 | 1 2 3 | 3pm3.2i | |- ( A e. _V /\ B e. _V /\ C e. _V ) | 
| 11 | 4 5 6 | 3pm3.2i | |- ( X e. _V /\ Y e. _V /\ Z e. _V ) | 
| 12 | 7 8 9 | 3pm3.2i | |- ( A =/= B /\ A =/= C /\ B =/= C ) | 
| 13 | ftpg |  |-  ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( X e. _V /\ Y e. _V /\ Z e. _V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> { <. A , X >. , <. B , Y >. , <. C , Z >. } : { A , B , C } --> { X , Y , Z } ) | |
| 14 | 10 11 12 13 | mp3an |  |-  { <. A , X >. , <. B , Y >. , <. C , Z >. } : { A , B , C } --> { X , Y , Z } |