Step |
Hyp |
Ref |
Expression |
1 |
|
fucass.q |
|- Q = ( C FuncCat D ) |
2 |
|
fucass.n |
|- N = ( C Nat D ) |
3 |
|
fucass.x |
|- .xb = ( comp ` Q ) |
4 |
|
fucass.r |
|- ( ph -> R e. ( F N G ) ) |
5 |
|
fucass.s |
|- ( ph -> S e. ( G N H ) ) |
6 |
|
fucass.t |
|- ( ph -> T e. ( H N K ) ) |
7 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
8 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
9 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
10 |
2
|
natrcl |
|- ( R e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
11 |
4 10
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
12 |
11
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
13 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
15 |
14
|
simprd |
|- ( ph -> D e. Cat ) |
16 |
15
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
17 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
18 |
|
relfunc |
|- Rel ( C Func D ) |
19 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
20 |
18 12 19
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
21 |
17 7 20
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
22 |
21
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
23 |
11
|
simprd |
|- ( ph -> G e. ( C Func D ) ) |
24 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
25 |
18 23 24
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
26 |
17 7 25
|
funcf1 |
|- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
27 |
26
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
28 |
2
|
natrcl |
|- ( T e. ( H N K ) -> ( H e. ( C Func D ) /\ K e. ( C Func D ) ) ) |
29 |
6 28
|
syl |
|- ( ph -> ( H e. ( C Func D ) /\ K e. ( C Func D ) ) ) |
30 |
29
|
simpld |
|- ( ph -> H e. ( C Func D ) ) |
31 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ H e. ( C Func D ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
32 |
18 30 31
|
sylancr |
|- ( ph -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
33 |
17 7 32
|
funcf1 |
|- ( ph -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
34 |
33
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` H ) ` x ) e. ( Base ` D ) ) |
35 |
2 4
|
nat1st2nd |
|- ( ph -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
37 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
38 |
2 36 17 8 37
|
natcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( R ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
39 |
2 5
|
nat1st2nd |
|- ( ph -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
41 |
2 40 17 8 37
|
natcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( S ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
42 |
29
|
simprd |
|- ( ph -> K e. ( C Func D ) ) |
43 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ K e. ( C Func D ) ) -> ( 1st ` K ) ( C Func D ) ( 2nd ` K ) ) |
44 |
18 42 43
|
sylancr |
|- ( ph -> ( 1st ` K ) ( C Func D ) ( 2nd ` K ) ) |
45 |
17 7 44
|
funcf1 |
|- ( ph -> ( 1st ` K ) : ( Base ` C ) --> ( Base ` D ) ) |
46 |
45
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` K ) ` x ) e. ( Base ` D ) ) |
47 |
2 6
|
nat1st2nd |
|- ( ph -> T e. ( <. ( 1st ` H ) , ( 2nd ` H ) >. N <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> T e. ( <. ( 1st ` H ) , ( 2nd ` H ) >. N <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
49 |
2 48 17 8 37
|
natcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( T ` x ) e. ( ( ( 1st ` H ) ` x ) ( Hom ` D ) ( ( 1st ` K ) ` x ) ) ) |
50 |
7 8 9 16 22 27 34 38 41 46 49
|
catass |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( T ` x ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( R ` x ) ) = ( ( T ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
51 |
5
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> S e. ( G N H ) ) |
52 |
6
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> T e. ( H N K ) ) |
53 |
1 2 17 9 3 51 52 37
|
fuccoval |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( T ( <. G , H >. .xb K ) S ) ` x ) = ( ( T ` x ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( S ` x ) ) ) |
54 |
53
|
oveq1d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( T ( <. G , H >. .xb K ) S ) ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( R ` x ) ) = ( ( ( T ` x ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( R ` x ) ) ) |
55 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> R e. ( F N G ) ) |
56 |
1 2 17 9 3 55 51 37
|
fuccoval |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( S ( <. F , G >. .xb H ) R ) ` x ) = ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) |
57 |
56
|
oveq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( T ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) = ( ( T ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
58 |
50 54 57
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( T ( <. G , H >. .xb K ) S ) ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( R ` x ) ) = ( ( T ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) |
59 |
58
|
mpteq2dva |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( ( T ( <. G , H >. .xb K ) S ) ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( R ` x ) ) ) = ( x e. ( Base ` C ) |-> ( ( T ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) ) |
60 |
1 2 3 5 6
|
fuccocl |
|- ( ph -> ( T ( <. G , H >. .xb K ) S ) e. ( G N K ) ) |
61 |
1 2 17 9 3 4 60
|
fucco |
|- ( ph -> ( ( T ( <. G , H >. .xb K ) S ) ( <. F , G >. .xb K ) R ) = ( x e. ( Base ` C ) |-> ( ( ( T ( <. G , H >. .xb K ) S ) ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( R ` x ) ) ) ) |
62 |
1 2 3 4 5
|
fuccocl |
|- ( ph -> ( S ( <. F , G >. .xb H ) R ) e. ( F N H ) ) |
63 |
1 2 17 9 3 62 6
|
fucco |
|- ( ph -> ( T ( <. F , H >. .xb K ) ( S ( <. F , G >. .xb H ) R ) ) = ( x e. ( Base ` C ) |-> ( ( T ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` K ) ` x ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) ) |
64 |
59 61 63
|
3eqtr4d |
|- ( ph -> ( ( T ( <. G , H >. .xb K ) S ) ( <. F , G >. .xb K ) R ) = ( T ( <. F , H >. .xb K ) ( S ( <. F , G >. .xb H ) R ) ) ) |