Step |
Hyp |
Ref |
Expression |
1 |
|
fucbas.q |
|- Q = ( C FuncCat D ) |
2 |
|
eqid |
|- ( C Func D ) = ( C Func D ) |
3 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
5 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
6 |
|
simpl |
|- ( ( C e. Cat /\ D e. Cat ) -> C e. Cat ) |
7 |
|
simpr |
|- ( ( C e. Cat /\ D e. Cat ) -> D e. Cat ) |
8 |
|
eqid |
|- ( comp ` Q ) = ( comp ` Q ) |
9 |
1 2 3 4 5 6 7 8
|
fuccofval |
|- ( ( C e. Cat /\ D e. Cat ) -> ( comp ` Q ) = ( v e. ( ( C Func D ) X. ( C Func D ) ) , h e. ( C Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( C Nat D ) h ) , a e. ( f ( C Nat D ) g ) |-> ( x e. ( Base ` C ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
10 |
1 2 3 4 5 6 7 9
|
fucval |
|- ( ( C e. Cat /\ D e. Cat ) -> Q = { <. ( Base ` ndx ) , ( C Func D ) >. , <. ( Hom ` ndx ) , ( C Nat D ) >. , <. ( comp ` ndx ) , ( comp ` Q ) >. } ) |
11 |
|
catstr |
|- { <. ( Base ` ndx ) , ( C Func D ) >. , <. ( Hom ` ndx ) , ( C Nat D ) >. , <. ( comp ` ndx ) , ( comp ` Q ) >. } Struct <. 1 , ; 1 5 >. |
12 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
13 |
|
snsstp1 |
|- { <. ( Base ` ndx ) , ( C Func D ) >. } C_ { <. ( Base ` ndx ) , ( C Func D ) >. , <. ( Hom ` ndx ) , ( C Nat D ) >. , <. ( comp ` ndx ) , ( comp ` Q ) >. } |
14 |
|
ovexd |
|- ( ( C e. Cat /\ D e. Cat ) -> ( C Func D ) e. _V ) |
15 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
16 |
10 11 12 13 14 15
|
strfv3 |
|- ( ( C e. Cat /\ D e. Cat ) -> ( Base ` Q ) = ( C Func D ) ) |
17 |
16
|
eqcomd |
|- ( ( C e. Cat /\ D e. Cat ) -> ( C Func D ) = ( Base ` Q ) ) |
18 |
|
base0 |
|- (/) = ( Base ` (/) ) |
19 |
|
funcrcl |
|- ( f e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
20 |
19
|
con3i |
|- ( -. ( C e. Cat /\ D e. Cat ) -> -. f e. ( C Func D ) ) |
21 |
20
|
eq0rdv |
|- ( -. ( C e. Cat /\ D e. Cat ) -> ( C Func D ) = (/) ) |
22 |
|
fnfuc |
|- FuncCat Fn ( Cat X. Cat ) |
23 |
22
|
fndmi |
|- dom FuncCat = ( Cat X. Cat ) |
24 |
23
|
ndmov |
|- ( -. ( C e. Cat /\ D e. Cat ) -> ( C FuncCat D ) = (/) ) |
25 |
1 24
|
eqtrid |
|- ( -. ( C e. Cat /\ D e. Cat ) -> Q = (/) ) |
26 |
25
|
fveq2d |
|- ( -. ( C e. Cat /\ D e. Cat ) -> ( Base ` Q ) = ( Base ` (/) ) ) |
27 |
18 21 26
|
3eqtr4a |
|- ( -. ( C e. Cat /\ D e. Cat ) -> ( C Func D ) = ( Base ` Q ) ) |
28 |
17 27
|
pm2.61i |
|- ( C Func D ) = ( Base ` Q ) |