Metamath Proof Explorer


Theorem fuccat

Description: The functor category is a category. Remark 6.16 in Adamek p. 88. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuccat.q
|- Q = ( C FuncCat D )
fuccat.r
|- ( ph -> C e. Cat )
fuccat.s
|- ( ph -> D e. Cat )
Assertion fuccat
|- ( ph -> Q e. Cat )

Proof

Step Hyp Ref Expression
1 fuccat.q
 |-  Q = ( C FuncCat D )
2 fuccat.r
 |-  ( ph -> C e. Cat )
3 fuccat.s
 |-  ( ph -> D e. Cat )
4 eqid
 |-  ( Id ` D ) = ( Id ` D )
5 1 2 3 4 fuccatid
 |-  ( ph -> ( Q e. Cat /\ ( Id ` Q ) = ( f e. ( C Func D ) |-> ( ( Id ` D ) o. ( 1st ` f ) ) ) ) )
6 5 simpld
 |-  ( ph -> Q e. Cat )