Step |
Hyp |
Ref |
Expression |
1 |
|
fucco.q |
|- Q = ( C FuncCat D ) |
2 |
|
fucco.n |
|- N = ( C Nat D ) |
3 |
|
fucco.a |
|- A = ( Base ` C ) |
4 |
|
fucco.o |
|- .x. = ( comp ` D ) |
5 |
|
fucco.x |
|- .xb = ( comp ` Q ) |
6 |
|
fucco.f |
|- ( ph -> R e. ( F N G ) ) |
7 |
|
fucco.g |
|- ( ph -> S e. ( G N H ) ) |
8 |
|
eqid |
|- ( C Func D ) = ( C Func D ) |
9 |
2
|
natrcl |
|- ( R e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
10 |
6 9
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
11 |
10
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
12 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
14 |
13
|
simpld |
|- ( ph -> C e. Cat ) |
15 |
13
|
simprd |
|- ( ph -> D e. Cat ) |
16 |
1 8 2 3 4 14 15 5
|
fuccofval |
|- ( ph -> .xb = ( v e. ( ( C Func D ) X. ( C Func D ) ) , h e. ( C Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
17 |
|
fvexd |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` v ) e. _V ) |
18 |
|
simprl |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> v = <. F , G >. ) |
19 |
18
|
fveq2d |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` v ) = ( 1st ` <. F , G >. ) ) |
20 |
|
op1stg |
|- ( ( F e. ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` <. F , G >. ) = F ) |
21 |
10 20
|
syl |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` <. F , G >. ) = F ) |
23 |
19 22
|
eqtrd |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` v ) = F ) |
24 |
|
fvexd |
|- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` v ) e. _V ) |
25 |
18
|
adantr |
|- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> v = <. F , G >. ) |
26 |
25
|
fveq2d |
|- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` v ) = ( 2nd ` <. F , G >. ) ) |
27 |
|
op2ndg |
|- ( ( F e. ( C Func D ) /\ G e. ( C Func D ) ) -> ( 2nd ` <. F , G >. ) = G ) |
28 |
10 27
|
syl |
|- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
29 |
28
|
ad2antrr |
|- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` <. F , G >. ) = G ) |
30 |
26 29
|
eqtrd |
|- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` v ) = G ) |
31 |
|
simpr |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> g = G ) |
32 |
|
simprr |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> h = H ) |
33 |
32
|
ad2antrr |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> h = H ) |
34 |
31 33
|
oveq12d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( g N h ) = ( G N H ) ) |
35 |
|
simplr |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> f = F ) |
36 |
35 31
|
oveq12d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( f N g ) = ( F N G ) ) |
37 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( 1st ` f ) = ( 1st ` F ) ) |
38 |
37
|
fveq1d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) ) |
39 |
31
|
fveq2d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( 1st ` g ) = ( 1st ` G ) ) |
40 |
39
|
fveq1d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( 1st ` g ) ` x ) = ( ( 1st ` G ) ` x ) ) |
41 |
38 40
|
opeq12d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
42 |
33
|
fveq2d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( 1st ` h ) = ( 1st ` H ) ) |
43 |
42
|
fveq1d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( 1st ` h ) ` x ) = ( ( 1st ` H ) ` x ) ) |
44 |
41 43
|
oveq12d |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) = ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ) |
45 |
44
|
oveqd |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) = ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) |
46 |
45
|
mpteq2dv |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) = ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) |
47 |
34 36 46
|
mpoeq123dv |
|- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
48 |
24 30 47
|
csbied2 |
|- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
49 |
17 23 48
|
csbied2 |
|- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
50 |
|
opelxpi |
|- ( ( F e. ( C Func D ) /\ G e. ( C Func D ) ) -> <. F , G >. e. ( ( C Func D ) X. ( C Func D ) ) ) |
51 |
10 50
|
syl |
|- ( ph -> <. F , G >. e. ( ( C Func D ) X. ( C Func D ) ) ) |
52 |
2
|
natrcl |
|- ( S e. ( G N H ) -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
53 |
7 52
|
syl |
|- ( ph -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
54 |
53
|
simprd |
|- ( ph -> H e. ( C Func D ) ) |
55 |
|
ovex |
|- ( G N H ) e. _V |
56 |
|
ovex |
|- ( F N G ) e. _V |
57 |
55 56
|
mpoex |
|- ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) e. _V |
58 |
57
|
a1i |
|- ( ph -> ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) e. _V ) |
59 |
16 49 51 54 58
|
ovmpod |
|- ( ph -> ( <. F , G >. .xb H ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
60 |
|
simprl |
|- ( ( ph /\ ( b = S /\ a = R ) ) -> b = S ) |
61 |
60
|
fveq1d |
|- ( ( ph /\ ( b = S /\ a = R ) ) -> ( b ` x ) = ( S ` x ) ) |
62 |
|
simprr |
|- ( ( ph /\ ( b = S /\ a = R ) ) -> a = R ) |
63 |
62
|
fveq1d |
|- ( ( ph /\ ( b = S /\ a = R ) ) -> ( a ` x ) = ( R ` x ) ) |
64 |
61 63
|
oveq12d |
|- ( ( ph /\ ( b = S /\ a = R ) ) -> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) = ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) |
65 |
64
|
mpteq2dv |
|- ( ( ph /\ ( b = S /\ a = R ) ) -> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) = ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
66 |
3
|
fvexi |
|- A e. _V |
67 |
66
|
mptex |
|- ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. _V |
68 |
67
|
a1i |
|- ( ph -> ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. _V ) |
69 |
59 65 7 6 68
|
ovmpod |
|- ( ph -> ( S ( <. F , G >. .xb H ) R ) = ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |