Step |
Hyp |
Ref |
Expression |
1 |
|
fucidcl.q |
|- Q = ( C FuncCat D ) |
2 |
|
fucidcl.n |
|- N = ( C Nat D ) |
3 |
|
fucidcl.x |
|- .1. = ( Id ` D ) |
4 |
|
fucidcl.f |
|- ( ph -> F e. ( C Func D ) ) |
5 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
6 |
4 5
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
7 |
6
|
simprd |
|- ( ph -> D e. Cat ) |
8 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
9 |
8 3
|
cidfn |
|- ( D e. Cat -> .1. Fn ( Base ` D ) ) |
10 |
7 9
|
syl |
|- ( ph -> .1. Fn ( Base ` D ) ) |
11 |
|
dffn2 |
|- ( .1. Fn ( Base ` D ) <-> .1. : ( Base ` D ) --> _V ) |
12 |
10 11
|
sylib |
|- ( ph -> .1. : ( Base ` D ) --> _V ) |
13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
14 |
|
relfunc |
|- Rel ( C Func D ) |
15 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
16 |
14 4 15
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
17 |
13 8 16
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
18 |
|
fcompt |
|- ( ( .1. : ( Base ` D ) --> _V /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( .1. o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
19 |
12 17 18
|
syl2anc |
|- ( ph -> ( .1. o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
20 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
21 |
7
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
22 |
17
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
23 |
8 20 3 21 22
|
catidcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
24 |
23
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` C ) ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
25 |
|
fvex |
|- ( Base ` C ) e. _V |
26 |
|
mptelixpg |
|- ( ( Base ` C ) e. _V -> ( ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. ( Base ` C ) ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
27 |
25 26
|
ax-mp |
|- ( ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. ( Base ` C ) ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
28 |
24 27
|
sylibr |
|- ( ph -> ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
29 |
19 28
|
eqeltrd |
|- ( ph -> ( .1. o. ( 1st ` F ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
30 |
7
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> D e. Cat ) |
31 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> x e. ( Base ` C ) ) |
32 |
31 22
|
syldan |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
33 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
34 |
17
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
35 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> y e. ( Base ` C ) ) |
36 |
34 35
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
37 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
38 |
16
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
39 |
13 37 20 38 31 35
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
40 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
41 |
39 40
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
42 |
8 20 3 30 32 33 36 41
|
catlid |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. ` ( ( 1st ` F ) ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
43 |
8 20 3 30 32 33 36 41
|
catrid |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
44 |
42 43
|
eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. ` ( ( 1st ` F ) ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
45 |
|
fvco3 |
|- ( ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) /\ y e. ( Base ` C ) ) -> ( ( .1. o. ( 1st ` F ) ) ` y ) = ( .1. ` ( ( 1st ` F ) ` y ) ) ) |
46 |
34 35 45
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. o. ( 1st ` F ) ) ` y ) = ( .1. ` ( ( 1st ` F ) ` y ) ) ) |
47 |
46
|
oveq1d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( .1. ` ( ( 1st ` F ) ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
48 |
|
fvco3 |
|- ( ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) /\ x e. ( Base ` C ) ) -> ( ( .1. o. ( 1st ` F ) ) ` x ) = ( .1. ` ( ( 1st ` F ) ` x ) ) ) |
49 |
34 31 48
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. o. ( 1st ` F ) ) ` x ) = ( .1. ` ( ( 1st ` F ) ` x ) ) ) |
50 |
49
|
oveq2d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
51 |
44 47 50
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) |
52 |
51
|
ralrimivvva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) |
53 |
2 13 37 20 33 4 4
|
isnat2 |
|- ( ph -> ( ( .1. o. ( 1st ` F ) ) e. ( F N F ) <-> ( ( .1. o. ( 1st ` F ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) ) ) |
54 |
29 52 53
|
mpbir2and |
|- ( ph -> ( .1. o. ( 1st ` F ) ) e. ( F N F ) ) |