Step |
Hyp |
Ref |
Expression |
1 |
|
fuciso.q |
|- Q = ( C FuncCat D ) |
2 |
|
fuciso.b |
|- B = ( Base ` C ) |
3 |
|
fuciso.n |
|- N = ( C Nat D ) |
4 |
|
fuciso.f |
|- ( ph -> F e. ( C Func D ) ) |
5 |
|
fuciso.g |
|- ( ph -> G e. ( C Func D ) ) |
6 |
|
fucsect.s |
|- S = ( Sect ` Q ) |
7 |
|
fucsect.t |
|- T = ( Sect ` D ) |
8 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
9 |
1 3
|
fuchom |
|- N = ( Hom ` Q ) |
10 |
|
eqid |
|- ( comp ` Q ) = ( comp ` Q ) |
11 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
12 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
13 |
4 12
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
14 |
13
|
simpld |
|- ( ph -> C e. Cat ) |
15 |
13
|
simprd |
|- ( ph -> D e. Cat ) |
16 |
1 14 15
|
fuccat |
|- ( ph -> Q e. Cat ) |
17 |
8 9 10 11 6 16 4 5
|
issect |
|- ( ph -> ( U ( F S G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) ) ) |
18 |
|
ovex |
|- ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) e. _V |
19 |
18
|
rgenw |
|- A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) e. _V |
20 |
|
mpteqb |
|- ( A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) e. _V -> ( ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) <-> A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
21 |
19 20
|
mp1i |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) <-> A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
22 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
23 |
|
simprl |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> U e. ( F N G ) ) |
24 |
|
simprr |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> V e. ( G N F ) ) |
25 |
1 3 2 22 10 23 24
|
fucco |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
27 |
4
|
adantr |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> F e. ( C Func D ) ) |
28 |
1 11 26 27
|
fucid |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( Id ` Q ) ` F ) = ( ( Id ` D ) o. ( 1st ` F ) ) ) |
29 |
15
|
adantr |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> D e. Cat ) |
30 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
31 |
30 26
|
cidfn |
|- ( D e. Cat -> ( Id ` D ) Fn ( Base ` D ) ) |
32 |
29 31
|
syl |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( Id ` D ) Fn ( Base ` D ) ) |
33 |
|
dffn2 |
|- ( ( Id ` D ) Fn ( Base ` D ) <-> ( Id ` D ) : ( Base ` D ) --> _V ) |
34 |
32 33
|
sylib |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( Id ` D ) : ( Base ` D ) --> _V ) |
35 |
|
relfunc |
|- Rel ( C Func D ) |
36 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
37 |
35 4 36
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
38 |
2 30 37
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
40 |
|
fcompt |
|- ( ( ( Id ` D ) : ( Base ` D ) --> _V /\ ( 1st ` F ) : B --> ( Base ` D ) ) -> ( ( Id ` D ) o. ( 1st ` F ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
41 |
34 39 40
|
syl2anc |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( Id ` D ) o. ( 1st ` F ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
42 |
28 41
|
eqtrd |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( Id ` Q ) ` F ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
43 |
25 42
|
eqeq12d |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) <-> ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) ) |
44 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
45 |
29
|
adantr |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> D e. Cat ) |
46 |
39
|
ffvelrnda |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
47 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
48 |
35 5 47
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
49 |
2 30 48
|
funcf1 |
|- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
50 |
49
|
adantr |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
51 |
50
|
ffvelrnda |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
52 |
23
|
adantr |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> U e. ( F N G ) ) |
53 |
3 52
|
nat1st2nd |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> U e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
54 |
|
simpr |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> x e. B ) |
55 |
3 53 2 44 54
|
natcl |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( U ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
56 |
24
|
adantr |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> V e. ( G N F ) ) |
57 |
3 56
|
nat1st2nd |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> V e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
58 |
3 57 2 44 54
|
natcl |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( V ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
59 |
30 44 22 26 7 45 46 51 55 58
|
issect2 |
|- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
60 |
59
|
ralbidva |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
61 |
21 43 60
|
3bitr4d |
|- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) <-> A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) |
62 |
61
|
pm5.32da |
|- ( ph -> ( ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
63 |
|
df-3an |
|- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) ) |
64 |
|
df-3an |
|- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) |
65 |
62 63 64
|
3bitr4g |
|- ( ph -> ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
66 |
17 65
|
bitrd |
|- ( ph -> ( U ( F S G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |