Step |
Hyp |
Ref |
Expression |
1 |
|
fucval.q |
|- Q = ( C FuncCat D ) |
2 |
|
fucval.b |
|- B = ( C Func D ) |
3 |
|
fucval.n |
|- N = ( C Nat D ) |
4 |
|
fucval.a |
|- A = ( Base ` C ) |
5 |
|
fucval.o |
|- .x. = ( comp ` D ) |
6 |
|
fucval.c |
|- ( ph -> C e. Cat ) |
7 |
|
fucval.d |
|- ( ph -> D e. Cat ) |
8 |
|
fucval.x |
|- ( ph -> .xb = ( v e. ( B X. B ) , h e. B |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
9 |
|
df-fuc |
|- FuncCat = ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
10 |
9
|
a1i |
|- ( ph -> FuncCat = ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) ) |
11 |
|
simprl |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> t = C ) |
12 |
|
simprr |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> u = D ) |
13 |
11 12
|
oveq12d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( t Func u ) = ( C Func D ) ) |
14 |
13 2
|
eqtr4di |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( t Func u ) = B ) |
15 |
14
|
opeq2d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> <. ( Base ` ndx ) , ( t Func u ) >. = <. ( Base ` ndx ) , B >. ) |
16 |
11 12
|
oveq12d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( t Nat u ) = ( C Nat D ) ) |
17 |
16 3
|
eqtr4di |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( t Nat u ) = N ) |
18 |
17
|
opeq2d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> <. ( Hom ` ndx ) , ( t Nat u ) >. = <. ( Hom ` ndx ) , N >. ) |
19 |
14
|
sqxpeqd |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( ( t Func u ) X. ( t Func u ) ) = ( B X. B ) ) |
20 |
17
|
oveqd |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( g ( t Nat u ) h ) = ( g N h ) ) |
21 |
17
|
oveqd |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( f ( t Nat u ) g ) = ( f N g ) ) |
22 |
11
|
fveq2d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( Base ` t ) = ( Base ` C ) ) |
23 |
22 4
|
eqtr4di |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( Base ` t ) = A ) |
24 |
12
|
fveq2d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( comp ` u ) = ( comp ` D ) ) |
25 |
24 5
|
eqtr4di |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( comp ` u ) = .x. ) |
26 |
25
|
oveqd |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) = ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ) |
27 |
26
|
oveqd |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) = ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) |
28 |
23 27
|
mpteq12dv |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) = ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
29 |
20 21 28
|
mpoeq123dv |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
30 |
29
|
csbeq2dv |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
31 |
30
|
csbeq2dv |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
32 |
19 14 31
|
mpoeq123dv |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( B X. B ) , h e. B |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
33 |
8
|
adantr |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> .xb = ( v e. ( B X. B ) , h e. B |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
34 |
32 33
|
eqtr4d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = .xb ) |
35 |
34
|
opeq2d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. = <. ( comp ` ndx ) , .xb >. ) |
36 |
15 18 35
|
tpeq123d |
|- ( ( ph /\ ( t = C /\ u = D ) ) -> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , N >. , <. ( comp ` ndx ) , .xb >. } ) |
37 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , N >. , <. ( comp ` ndx ) , .xb >. } e. _V |
38 |
37
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , N >. , <. ( comp ` ndx ) , .xb >. } e. _V ) |
39 |
10 36 6 7 38
|
ovmpod |
|- ( ph -> ( C FuncCat D ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , N >. , <. ( comp ` ndx ) , .xb >. } ) |
40 |
1 39
|
eqtrid |
|- ( ph -> Q = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , N >. , <. ( comp ` ndx ) , .xb >. } ) |