| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulloppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fulloppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fulloppc.f |
|- ( ph -> F ( C Full D ) G ) |
| 4 |
|
fullfunc |
|- ( C Full D ) C_ ( C Func D ) |
| 5 |
4
|
ssbri |
|- ( F ( C Full D ) G -> F ( C Func D ) G ) |
| 6 |
3 5
|
syl |
|- ( ph -> F ( C Func D ) G ) |
| 7 |
1 2 6
|
funcoppc |
|- ( ph -> F ( O Func P ) tpos G ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F ( C Full D ) G ) |
| 12 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 13 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 14 |
8 9 10 11 12 13
|
fullfo |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( y G x ) : ( y ( Hom ` C ) x ) -onto-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 15 |
|
forn |
|- ( ( y G x ) : ( y ( Hom ` C ) x ) -onto-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) -> ran ( y G x ) = ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 16 |
14 15
|
syl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ran ( y G x ) = ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 17 |
|
ovtpos |
|- ( x tpos G y ) = ( y G x ) |
| 18 |
17
|
rneqi |
|- ran ( x tpos G y ) = ran ( y G x ) |
| 19 |
9 2
|
oppchom |
|- ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) |
| 20 |
16 18 19
|
3eqtr4g |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ran ( x tpos G y ) = ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) ) |
| 21 |
20
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ran ( x tpos G y ) = ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) ) |
| 22 |
1 8
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 23 |
|
eqid |
|- ( Hom ` P ) = ( Hom ` P ) |
| 24 |
22 23
|
isfull |
|- ( F ( O Full P ) tpos G <-> ( F ( O Func P ) tpos G /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ran ( x tpos G y ) = ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) ) ) |
| 25 |
7 21 24
|
sylanbrc |
|- ( ph -> F ( O Full P ) tpos G ) |