Step |
Hyp |
Ref |
Expression |
1 |
|
fullpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
2 |
|
fullpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
3 |
|
fullpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
4 |
|
fullpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
5 |
|
fullpropd.a |
|- ( ph -> A e. V ) |
6 |
|
fullpropd.b |
|- ( ph -> B e. V ) |
7 |
|
fullpropd.c |
|- ( ph -> C e. V ) |
8 |
|
fullpropd.d |
|- ( ph -> D e. V ) |
9 |
|
relfull |
|- Rel ( A Full C ) |
10 |
|
relfull |
|- Rel ( B Full D ) |
11 |
1
|
homfeqbas |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ f ( A Func C ) g ) -> ( Base ` A ) = ( Base ` B ) ) |
13 |
12
|
adantr |
|- ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) -> ( Base ` A ) = ( Base ` B ) ) |
14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
15 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
16 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
17 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
18 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
19 |
|
simpllr |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> f ( A Func C ) g ) |
20 |
18 14 19
|
funcf1 |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> f : ( Base ` A ) --> ( Base ` C ) ) |
21 |
|
simplr |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> x e. ( Base ` A ) ) |
22 |
20 21
|
ffvelrnd |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( f ` x ) e. ( Base ` C ) ) |
23 |
|
simpr |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> y e. ( Base ` A ) ) |
24 |
20 23
|
ffvelrnd |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( f ` y ) e. ( Base ` C ) ) |
25 |
14 15 16 17 22 24
|
homfeqval |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) |
26 |
25
|
eqeq2d |
|- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) <-> ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
27 |
13 26
|
raleqbidva |
|- ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) -> ( A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) <-> A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
28 |
12 27
|
raleqbidva |
|- ( ( ph /\ f ( A Func C ) g ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
29 |
28
|
pm5.32da |
|- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) <-> ( f ( A Func C ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
30 |
1 2 3 4 5 6 7 8
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
31 |
30
|
breqd |
|- ( ph -> ( f ( A Func C ) g <-> f ( B Func D ) g ) ) |
32 |
31
|
anbi1d |
|- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
33 |
29 32
|
bitrd |
|- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
34 |
18 15
|
isfull |
|- ( f ( A Full C ) g <-> ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) ) |
35 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
36 |
35 16
|
isfull |
|- ( f ( B Full D ) g <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
37 |
33 34 36
|
3bitr4g |
|- ( ph -> ( f ( A Full C ) g <-> f ( B Full D ) g ) ) |
38 |
9 10 37
|
eqbrrdiv |
|- ( ph -> ( A Full C ) = ( B Full D ) ) |