| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ffthres2c.a | 
							 |-  A = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							ffthres2c.e | 
							 |-  E = ( D |`s S )  | 
						
						
							| 3 | 
							
								
							 | 
							ffthres2c.d | 
							 |-  ( ph -> D e. Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							ffthres2c.r | 
							 |-  ( ph -> S e. V )  | 
						
						
							| 5 | 
							
								
							 | 
							ffthres2c.1 | 
							 |-  ( ph -> F : A --> S )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							funcres2c | 
							 |-  ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							resshom | 
							 |-  ( S e. V -> ( Hom ` D ) = ( Hom ` E ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							syl | 
							 |-  ( ph -> ( Hom ` D ) = ( Hom ` E ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveqd | 
							 |-  ( ph -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq2d | 
							 |-  ( ph -> ( ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							2ralbidv | 
							 |-  ( ph -> ( A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							anbi12d | 
							 |-  ( ph -> ( ( F ( C Func D ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) )  | 
						
						
							| 14 | 
							
								1 7
							 | 
							isfull | 
							 |-  ( F ( C Full D ) G <-> ( F ( C Func D ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` E ) = ( Hom ` E )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							isfull | 
							 |-  ( F ( C Full E ) G <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) )  | 
						
						
							| 17 | 
							
								13 14 16
							 | 
							3bitr4g | 
							 |-  ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) )  |