Step |
Hyp |
Ref |
Expression |
1 |
|
fullthinc.b |
|- B = ( Base ` C ) |
2 |
|
fullthinc.j |
|- J = ( Hom ` D ) |
3 |
|
fullthinc.h |
|- H = ( Hom ` C ) |
4 |
|
fullthinc.d |
|- ( ph -> D e. ThinCat ) |
5 |
|
fullthinc2.f |
|- ( ph -> F ( C Full D ) G ) |
6 |
|
fullthinc2.x |
|- ( ph -> X e. B ) |
7 |
|
fullthinc2.y |
|- ( ph -> Y e. B ) |
8 |
|
fullfunc |
|- ( C Full D ) C_ ( C Func D ) |
9 |
8
|
ssbri |
|- ( F ( C Full D ) G -> F ( C Func D ) G ) |
10 |
5 9
|
syl |
|- ( ph -> F ( C Func D ) G ) |
11 |
1 2 3 4 10
|
fullthinc |
|- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) ) |
12 |
5 11
|
mpbid |
|- ( ph -> A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
13 |
|
oveq12 |
|- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
14 |
13
|
eqeq1d |
|- ( ( x = X /\ y = Y ) -> ( ( x H y ) = (/) <-> ( X H Y ) = (/) ) ) |
15 |
|
simpl |
|- ( ( x = X /\ y = Y ) -> x = X ) |
16 |
15
|
fveq2d |
|- ( ( x = X /\ y = Y ) -> ( F ` x ) = ( F ` X ) ) |
17 |
|
simpr |
|- ( ( x = X /\ y = Y ) -> y = Y ) |
18 |
17
|
fveq2d |
|- ( ( x = X /\ y = Y ) -> ( F ` y ) = ( F ` Y ) ) |
19 |
16 18
|
oveq12d |
|- ( ( x = X /\ y = Y ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
20 |
19
|
eqeq1d |
|- ( ( x = X /\ y = Y ) -> ( ( ( F ` x ) J ( F ` y ) ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
21 |
14 20
|
imbi12d |
|- ( ( x = X /\ y = Y ) -> ( ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) <-> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) ) |
22 |
21
|
rspc2gv |
|- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) -> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) ) |
23 |
22
|
imp |
|- ( ( ( X e. B /\ Y e. B ) /\ A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) -> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
24 |
6 7 12 23
|
syl21anc |
|- ( ph -> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
25 |
1 3 2 10 6 7
|
funcf2 |
|- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
26 |
25
|
f002 |
|- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
27 |
24 26
|
impbid |
|- ( ph -> ( ( X H Y ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |