Step |
Hyp |
Ref |
Expression |
1 |
|
fnun |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) |
2 |
1
|
expcom |
|- ( ( A i^i B ) = (/) -> ( ( F Fn A /\ G Fn B ) -> ( F u. G ) Fn ( A u. B ) ) ) |
3 |
|
rnun |
|- ran ( F u. G ) = ( ran F u. ran G ) |
4 |
|
unss12 |
|- ( ( ran F C_ C /\ ran G C_ D ) -> ( ran F u. ran G ) C_ ( C u. D ) ) |
5 |
3 4
|
eqsstrid |
|- ( ( ran F C_ C /\ ran G C_ D ) -> ran ( F u. G ) C_ ( C u. D ) ) |
6 |
2 5
|
anim12d1 |
|- ( ( A i^i B ) = (/) -> ( ( ( F Fn A /\ G Fn B ) /\ ( ran F C_ C /\ ran G C_ D ) ) -> ( ( F u. G ) Fn ( A u. B ) /\ ran ( F u. G ) C_ ( C u. D ) ) ) ) |
7 |
|
df-f |
|- ( F : A --> C <-> ( F Fn A /\ ran F C_ C ) ) |
8 |
|
df-f |
|- ( G : B --> D <-> ( G Fn B /\ ran G C_ D ) ) |
9 |
7 8
|
anbi12i |
|- ( ( F : A --> C /\ G : B --> D ) <-> ( ( F Fn A /\ ran F C_ C ) /\ ( G Fn B /\ ran G C_ D ) ) ) |
10 |
|
an4 |
|- ( ( ( F Fn A /\ ran F C_ C ) /\ ( G Fn B /\ ran G C_ D ) ) <-> ( ( F Fn A /\ G Fn B ) /\ ( ran F C_ C /\ ran G C_ D ) ) ) |
11 |
9 10
|
bitri |
|- ( ( F : A --> C /\ G : B --> D ) <-> ( ( F Fn A /\ G Fn B ) /\ ( ran F C_ C /\ ran G C_ D ) ) ) |
12 |
|
df-f |
|- ( ( F u. G ) : ( A u. B ) --> ( C u. D ) <-> ( ( F u. G ) Fn ( A u. B ) /\ ran ( F u. G ) C_ ( C u. D ) ) ) |
13 |
6 11 12
|
3imtr4g |
|- ( ( A i^i B ) = (/) -> ( ( F : A --> C /\ G : B --> D ) -> ( F u. G ) : ( A u. B ) --> ( C u. D ) ) ) |
14 |
13
|
impcom |
|- ( ( ( F : A --> C /\ G : B --> D ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) : ( A u. B ) --> ( C u. D ) ) |