Metamath Proof Explorer


Theorem fun0

Description: The empty set is a function. Theorem 10.3 of Quine p. 65. (Contributed by NM, 7-Apr-1998)

Ref Expression
Assertion fun0
|- Fun (/)

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ { <. (/) , (/) >. }
2 0ex
 |-  (/) e. _V
3 2 2 funsn
 |-  Fun { <. (/) , (/) >. }
4 funss
 |-  ( (/) C_ { <. (/) , (/) >. } -> ( Fun { <. (/) , (/) >. } -> Fun (/) ) )
5 1 3 4 mp2
 |-  Fun (/)