Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi2 |
|- ( ( x = z <-> y = w ) <-> ( ( x = z -> y = w ) /\ ( y = w -> x = z ) ) ) |
2 |
1
|
imbi2i |
|- ( ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> ( ( x A y /\ z A w ) -> ( ( x = z -> y = w ) /\ ( y = w -> x = z ) ) ) ) |
3 |
|
pm4.76 |
|- ( ( ( ( x A y /\ z A w ) -> ( x = z -> y = w ) ) /\ ( ( x A y /\ z A w ) -> ( y = w -> x = z ) ) ) <-> ( ( x A y /\ z A w ) -> ( ( x = z -> y = w ) /\ ( y = w -> x = z ) ) ) ) |
4 |
|
bi2.04 |
|- ( ( ( x A y /\ z A w ) -> ( x = z -> y = w ) ) <-> ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) ) |
5 |
|
bi2.04 |
|- ( ( ( x A y /\ z A w ) -> ( y = w -> x = z ) ) <-> ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) |
6 |
4 5
|
anbi12i |
|- ( ( ( ( x A y /\ z A w ) -> ( x = z -> y = w ) ) /\ ( ( x A y /\ z A w ) -> ( y = w -> x = z ) ) ) <-> ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
7 |
2 3 6
|
3bitr2i |
|- ( ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
8 |
7
|
2albii |
|- ( A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> A. x A. y ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
9 |
|
19.26-2 |
|- ( A. x A. y ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) <-> ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ A. x A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
10 |
|
alcom |
|- ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> A. y A. x ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) ) |
11 |
|
breq1 |
|- ( x = z -> ( x A y <-> z A y ) ) |
12 |
11
|
anbi1d |
|- ( x = z -> ( ( x A y /\ z A w ) <-> ( z A y /\ z A w ) ) ) |
13 |
12
|
imbi1d |
|- ( x = z -> ( ( ( x A y /\ z A w ) -> y = w ) <-> ( ( z A y /\ z A w ) -> y = w ) ) ) |
14 |
13
|
equsalvw |
|- ( A. x ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> ( ( z A y /\ z A w ) -> y = w ) ) |
15 |
14
|
albii |
|- ( A. y A. x ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> A. y ( ( z A y /\ z A w ) -> y = w ) ) |
16 |
10 15
|
bitri |
|- ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> A. y ( ( z A y /\ z A w ) -> y = w ) ) |
17 |
|
breq2 |
|- ( y = w -> ( x A y <-> x A w ) ) |
18 |
17
|
anbi1d |
|- ( y = w -> ( ( x A y /\ z A w ) <-> ( x A w /\ z A w ) ) ) |
19 |
18
|
imbi1d |
|- ( y = w -> ( ( ( x A y /\ z A w ) -> x = z ) <-> ( ( x A w /\ z A w ) -> x = z ) ) ) |
20 |
19
|
equsalvw |
|- ( A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) <-> ( ( x A w /\ z A w ) -> x = z ) ) |
21 |
20
|
albii |
|- ( A. x A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) <-> A. x ( ( x A w /\ z A w ) -> x = z ) ) |
22 |
16 21
|
anbi12i |
|- ( ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ A. x A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) <-> ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
23 |
8 9 22
|
3bitri |
|- ( A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
24 |
23
|
2albii |
|- ( A. z A. w A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> A. z A. w ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
25 |
|
19.26-2 |
|- ( A. z A. w ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) <-> ( A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
26 |
24 25
|
bitr2i |
|- ( ( A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) <-> A. z A. w A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |
27 |
|
fun2cnv |
|- ( Fun `' `' A <-> A. z E* y z A y ) |
28 |
|
breq2 |
|- ( y = w -> ( z A y <-> z A w ) ) |
29 |
28
|
mo4 |
|- ( E* y z A y <-> A. y A. w ( ( z A y /\ z A w ) -> y = w ) ) |
30 |
29
|
albii |
|- ( A. z E* y z A y <-> A. z A. y A. w ( ( z A y /\ z A w ) -> y = w ) ) |
31 |
|
alcom |
|- ( A. y A. w ( ( z A y /\ z A w ) -> y = w ) <-> A. w A. y ( ( z A y /\ z A w ) -> y = w ) ) |
32 |
31
|
albii |
|- ( A. z A. y A. w ( ( z A y /\ z A w ) -> y = w ) <-> A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) ) |
33 |
27 30 32
|
3bitri |
|- ( Fun `' `' A <-> A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) ) |
34 |
|
funcnv2 |
|- ( Fun `' A <-> A. w E* x x A w ) |
35 |
|
breq1 |
|- ( x = z -> ( x A w <-> z A w ) ) |
36 |
35
|
mo4 |
|- ( E* x x A w <-> A. x A. z ( ( x A w /\ z A w ) -> x = z ) ) |
37 |
36
|
albii |
|- ( A. w E* x x A w <-> A. w A. x A. z ( ( x A w /\ z A w ) -> x = z ) ) |
38 |
|
alcom |
|- ( A. x A. z ( ( x A w /\ z A w ) -> x = z ) <-> A. z A. x ( ( x A w /\ z A w ) -> x = z ) ) |
39 |
38
|
albii |
|- ( A. w A. x A. z ( ( x A w /\ z A w ) -> x = z ) <-> A. w A. z A. x ( ( x A w /\ z A w ) -> x = z ) ) |
40 |
|
alcom |
|- ( A. w A. z A. x ( ( x A w /\ z A w ) -> x = z ) <-> A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) |
41 |
39 40
|
bitri |
|- ( A. w A. x A. z ( ( x A w /\ z A w ) -> x = z ) <-> A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) |
42 |
34 37 41
|
3bitri |
|- ( Fun `' A <-> A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) |
43 |
33 42
|
anbi12i |
|- ( ( Fun `' `' A /\ Fun `' A ) <-> ( A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
44 |
|
alrot4 |
|- ( A. x A. y A. z A. w ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> A. z A. w A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |
45 |
26 43 44
|
3bitr4i |
|- ( ( Fun `' `' A /\ Fun `' A ) <-> A. x A. y A. z A. w ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |