Metamath Proof Explorer


Theorem fun2cnv

Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of TakeutiZaring p. 23, who use the notation "Un(A)" for single-valued. Note that A is not necessarily a function. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion fun2cnv
|- ( Fun `' `' A <-> A. x E* y x A y )

Proof

Step Hyp Ref Expression
1 funcnv2
 |-  ( Fun `' `' A <-> A. x E* y y `' A x )
2 vex
 |-  y e. _V
3 vex
 |-  x e. _V
4 2 3 brcnv
 |-  ( y `' A x <-> x A y )
5 4 mobii
 |-  ( E* y y `' A x <-> E* y x A y )
6 5 albii
 |-  ( A. x E* y y `' A x <-> A. x E* y x A y )
7 1 6 bitri
 |-  ( Fun `' `' A <-> A. x E* y x A y )