Metamath Proof Explorer


Theorem fun2d

Description: The union of functions with disjoint domains is a function, deduction version of fun2 . (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses fun2d.f
|- ( ph -> F : A --> C )
fun2d.g
|- ( ph -> G : B --> C )
fun2d.i
|- ( ph -> ( A i^i B ) = (/) )
Assertion fun2d
|- ( ph -> ( F u. G ) : ( A u. B ) --> C )

Proof

Step Hyp Ref Expression
1 fun2d.f
 |-  ( ph -> F : A --> C )
2 fun2d.g
 |-  ( ph -> G : B --> C )
3 fun2d.i
 |-  ( ph -> ( A i^i B ) = (/) )
4 fun2
 |-  ( ( ( F : A --> C /\ G : B --> C ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) : ( A u. B ) --> C )
5 1 2 3 4 syl21anc
 |-  ( ph -> ( F u. G ) : ( A u. B ) --> C )