Metamath Proof Explorer


Theorem fun2ssres

Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion fun2ssres
|- ( ( Fun F /\ G C_ F /\ A C_ dom G ) -> ( F |` A ) = ( G |` A ) )

Proof

Step Hyp Ref Expression
1 resabs1
 |-  ( A C_ dom G -> ( ( F |` dom G ) |` A ) = ( F |` A ) )
2 1 eqcomd
 |-  ( A C_ dom G -> ( F |` A ) = ( ( F |` dom G ) |` A ) )
3 funssres
 |-  ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G )
4 3 reseq1d
 |-  ( ( Fun F /\ G C_ F ) -> ( ( F |` dom G ) |` A ) = ( G |` A ) )
5 2 4 sylan9eqr
 |-  ( ( ( Fun F /\ G C_ F ) /\ A C_ dom G ) -> ( F |` A ) = ( G |` A ) )
6 5 3impa
 |-  ( ( Fun F /\ G C_ F /\ A C_ dom G ) -> ( F |` A ) = ( G |` A ) )