| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 2 |
|
brrelex2 |
|- ( ( Rel F /\ A F B ) -> B e. _V ) |
| 3 |
1 2
|
sylan |
|- ( ( Fun F /\ A F B ) -> B e. _V ) |
| 4 |
|
breq2 |
|- ( y = B -> ( A F y <-> A F B ) ) |
| 5 |
4
|
anbi2d |
|- ( y = B -> ( ( Fun F /\ A F y ) <-> ( Fun F /\ A F B ) ) ) |
| 6 |
|
eqeq2 |
|- ( y = B -> ( ( F ` A ) = y <-> ( F ` A ) = B ) ) |
| 7 |
5 6
|
imbi12d |
|- ( y = B -> ( ( ( Fun F /\ A F y ) -> ( F ` A ) = y ) <-> ( ( Fun F /\ A F B ) -> ( F ` A ) = B ) ) ) |
| 8 |
|
funeu |
|- ( ( Fun F /\ A F y ) -> E! y A F y ) |
| 9 |
|
tz6.12-1 |
|- ( ( A F y /\ E! y A F y ) -> ( F ` A ) = y ) |
| 10 |
8 9
|
sylan2 |
|- ( ( A F y /\ ( Fun F /\ A F y ) ) -> ( F ` A ) = y ) |
| 11 |
10
|
anabss7 |
|- ( ( Fun F /\ A F y ) -> ( F ` A ) = y ) |
| 12 |
7 11
|
vtoclg |
|- ( B e. _V -> ( ( Fun F /\ A F B ) -> ( F ` A ) = B ) ) |
| 13 |
3 12
|
mpcom |
|- ( ( Fun F /\ A F B ) -> ( F ` A ) = B ) |
| 14 |
13
|
ex |
|- ( Fun F -> ( A F B -> ( F ` A ) = B ) ) |