Metamath Proof Explorer


Theorem funbrfvb

Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006)

Ref Expression
Assertion funbrfvb
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) = B <-> A F B ) )

Proof

Step Hyp Ref Expression
1 funfn
 |-  ( Fun F <-> F Fn dom F )
2 fnbrfvb
 |-  ( ( F Fn dom F /\ A e. dom F ) -> ( ( F ` A ) = B <-> A F B ) )
3 1 2 sylanb
 |-  ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) = B <-> A F B ) )