Description: Lemma 2 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| Assertion | funcestrcsetclem2 | |- ( ( ph /\ X e. B ) -> ( F ` X ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | 1 2 3 4 5 6 | funcestrcsetclem1 | |- ( ( ph /\ X e. B ) -> ( F ` X ) = ( Base ` X ) ) |
| 8 | 1 3 5 | estrcbasbas | |- ( ( ph /\ X e. B ) -> ( Base ` X ) e. U ) |
| 9 | 7 8 | eqeltrd | |- ( ( ph /\ X e. B ) -> ( F ` X ) e. U ) |