Step |
Hyp |
Ref |
Expression |
1 |
|
funcixp.b |
|- B = ( Base ` D ) |
2 |
|
funcixp.h |
|- H = ( Hom ` D ) |
3 |
|
funcixp.j |
|- J = ( Hom ` E ) |
4 |
|
funcixp.f |
|- ( ph -> F ( D Func E ) G ) |
5 |
|
funcf2.x |
|- ( ph -> X e. B ) |
6 |
|
funcf2.y |
|- ( ph -> Y e. B ) |
7 |
|
df-ov |
|- ( X G Y ) = ( G ` <. X , Y >. ) |
8 |
1 2 3 4
|
funcixp |
|- ( ph -> G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) ) |
9 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
10 |
|
2fveq3 |
|- ( z = <. X , Y >. -> ( F ` ( 1st ` z ) ) = ( F ` ( 1st ` <. X , Y >. ) ) ) |
11 |
|
2fveq3 |
|- ( z = <. X , Y >. -> ( F ` ( 2nd ` z ) ) = ( F ` ( 2nd ` <. X , Y >. ) ) ) |
12 |
10 11
|
oveq12d |
|- ( z = <. X , Y >. -> ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) = ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ) |
13 |
|
fveq2 |
|- ( z = <. X , Y >. -> ( H ` z ) = ( H ` <. X , Y >. ) ) |
14 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
15 |
13 14
|
eqtr4di |
|- ( z = <. X , Y >. -> ( H ` z ) = ( X H Y ) ) |
16 |
12 15
|
oveq12d |
|- ( z = <. X , Y >. -> ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) = ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
17 |
16
|
fvixp |
|- ( ( G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ <. X , Y >. e. ( B X. B ) ) -> ( G ` <. X , Y >. ) e. ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
18 |
8 9 17
|
syl2anc |
|- ( ph -> ( G ` <. X , Y >. ) e. ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
19 |
7 18
|
eqeltrid |
|- ( ph -> ( X G Y ) e. ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
20 |
|
op1stg |
|- ( ( X e. B /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
21 |
20
|
fveq2d |
|- ( ( X e. B /\ Y e. B ) -> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) |
22 |
|
op2ndg |
|- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
23 |
22
|
fveq2d |
|- ( ( X e. B /\ Y e. B ) -> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) |
24 |
21 23
|
oveq12d |
|- ( ( X e. B /\ Y e. B ) -> ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
25 |
5 6 24
|
syl2anc |
|- ( ph -> ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
26 |
25
|
oveq1d |
|- ( ph -> ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) = ( ( ( F ` X ) J ( F ` Y ) ) ^m ( X H Y ) ) ) |
27 |
19 26
|
eleqtrd |
|- ( ph -> ( X G Y ) e. ( ( ( F ` X ) J ( F ` Y ) ) ^m ( X H Y ) ) ) |
28 |
|
elmapi |
|- ( ( X G Y ) e. ( ( ( F ` X ) J ( F ` Y ) ) ^m ( X H Y ) ) -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |