Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funcfn2.b | |- B = ( Base ` D ) |
|
funcfn2.f | |- ( ph -> F ( D Func E ) G ) |
||
Assertion | funcfn2 | |- ( ph -> G Fn ( B X. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcfn2.b | |- B = ( Base ` D ) |
|
2 | funcfn2.f | |- ( ph -> F ( D Func E ) G ) |
|
3 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
4 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
5 | 1 3 4 2 | funcixp | |- ( ph -> G e. X_ x e. ( B X. B ) ( ( ( F ` ( 1st ` x ) ) ( Hom ` E ) ( F ` ( 2nd ` x ) ) ) ^m ( ( Hom ` D ) ` x ) ) ) |
6 | ixpfn | |- ( G e. X_ x e. ( B X. B ) ( ( ( F ` ( 1st ` x ) ) ( Hom ` E ) ( F ` ( 2nd ` x ) ) ) ^m ( ( Hom ` D ) ` x ) ) -> G Fn ( B X. B ) ) |
|
7 | 5 6 | syl | |- ( ph -> G Fn ( B X. B ) ) |