Metamath Proof Explorer


Theorem funcfn2

Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funcfn2.b
|- B = ( Base ` D )
funcfn2.f
|- ( ph -> F ( D Func E ) G )
Assertion funcfn2
|- ( ph -> G Fn ( B X. B ) )

Proof

Step Hyp Ref Expression
1 funcfn2.b
 |-  B = ( Base ` D )
2 funcfn2.f
 |-  ( ph -> F ( D Func E ) G )
3 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
4 eqid
 |-  ( Hom ` E ) = ( Hom ` E )
5 1 3 4 2 funcixp
 |-  ( ph -> G e. X_ x e. ( B X. B ) ( ( ( F ` ( 1st ` x ) ) ( Hom ` E ) ( F ` ( 2nd ` x ) ) ) ^m ( ( Hom ` D ) ` x ) ) )
6 ixpfn
 |-  ( G e. X_ x e. ( B X. B ) ( ( ( F ` ( 1st ` x ) ) ( Hom ` E ) ( F ` ( 2nd ` x ) ) ) ^m ( ( Hom ` D ) ` x ) ) -> G Fn ( B X. B ) )
7 5 6 syl
 |-  ( ph -> G Fn ( B X. B ) )