Step |
Hyp |
Ref |
Expression |
1 |
|
funcinv.b |
|- B = ( Base ` D ) |
2 |
|
funcinv.s |
|- I = ( Inv ` D ) |
3 |
|
funcinv.t |
|- J = ( Inv ` E ) |
4 |
|
funcinv.f |
|- ( ph -> F ( D Func E ) G ) |
5 |
|
funcinv.x |
|- ( ph -> X e. B ) |
6 |
|
funcinv.y |
|- ( ph -> Y e. B ) |
7 |
|
funcinv.m |
|- ( ph -> M ( X I Y ) N ) |
8 |
|
eqid |
|- ( Sect ` D ) = ( Sect ` D ) |
9 |
|
eqid |
|- ( Sect ` E ) = ( Sect ` E ) |
10 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
11 |
4 10
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
12 |
|
funcrcl |
|- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
14 |
13
|
simpld |
|- ( ph -> D e. Cat ) |
15 |
1 2 14 5 6 8
|
isinv |
|- ( ph -> ( M ( X I Y ) N <-> ( M ( X ( Sect ` D ) Y ) N /\ N ( Y ( Sect ` D ) X ) M ) ) ) |
16 |
7 15
|
mpbid |
|- ( ph -> ( M ( X ( Sect ` D ) Y ) N /\ N ( Y ( Sect ` D ) X ) M ) ) |
17 |
16
|
simpld |
|- ( ph -> M ( X ( Sect ` D ) Y ) N ) |
18 |
1 8 9 4 5 6 17
|
funcsect |
|- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` E ) ( F ` Y ) ) ( ( Y G X ) ` N ) ) |
19 |
16
|
simprd |
|- ( ph -> N ( Y ( Sect ` D ) X ) M ) |
20 |
1 8 9 4 6 5 19
|
funcsect |
|- ( ph -> ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) |
21 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
22 |
13
|
simprd |
|- ( ph -> E e. Cat ) |
23 |
1 21 4
|
funcf1 |
|- ( ph -> F : B --> ( Base ` E ) ) |
24 |
23 5
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. ( Base ` E ) ) |
25 |
23 6
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. ( Base ` E ) ) |
26 |
21 3 22 24 25 9
|
isinv |
|- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` E ) ( F ` Y ) ) ( ( Y G X ) ` N ) /\ ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) ) |
27 |
18 20 26
|
mpbir2and |
|- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) ) |