Step |
Hyp |
Ref |
Expression |
1 |
|
funciso.b |
|- B = ( Base ` D ) |
2 |
|
funciso.s |
|- I = ( Iso ` D ) |
3 |
|
funciso.t |
|- J = ( Iso ` E ) |
4 |
|
funciso.f |
|- ( ph -> F ( D Func E ) G ) |
5 |
|
funciso.x |
|- ( ph -> X e. B ) |
6 |
|
funciso.y |
|- ( ph -> Y e. B ) |
7 |
|
funciso.m |
|- ( ph -> M e. ( X I Y ) ) |
8 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
9 |
|
eqid |
|- ( Inv ` E ) = ( Inv ` E ) |
10 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
11 |
4 10
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
12 |
|
funcrcl |
|- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
14 |
13
|
simprd |
|- ( ph -> E e. Cat ) |
15 |
1 8 4
|
funcf1 |
|- ( ph -> F : B --> ( Base ` E ) ) |
16 |
15 5
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. ( Base ` E ) ) |
17 |
15 6
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. ( Base ` E ) ) |
18 |
|
eqid |
|- ( Inv ` D ) = ( Inv ` D ) |
19 |
13
|
simpld |
|- ( ph -> D e. Cat ) |
20 |
1 2 18 19 5 6 7
|
invisoinvr |
|- ( ph -> M ( X ( Inv ` D ) Y ) ( ( X ( Inv ` D ) Y ) ` M ) ) |
21 |
1 18 9 4 5 6 20
|
funcinv |
|- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) ( Inv ` E ) ( F ` Y ) ) ( ( Y G X ) ` ( ( X ( Inv ` D ) Y ) ` M ) ) ) |
22 |
8 9 14 16 17 3 21
|
inviso1 |
|- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) |