| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcixp.b |
|- B = ( Base ` D ) |
| 2 |
|
funcixp.h |
|- H = ( Hom ` D ) |
| 3 |
|
funcixp.j |
|- J = ( Hom ` E ) |
| 4 |
|
funcixp.f |
|- ( ph -> F ( D Func E ) G ) |
| 5 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 6 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 7 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
| 8 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 9 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 10 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
| 11 |
4 10
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 12 |
|
funcrcl |
|- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 14 |
13
|
simpld |
|- ( ph -> D e. Cat ) |
| 15 |
13
|
simprd |
|- ( ph -> E e. Cat ) |
| 16 |
1 5 2 3 6 7 8 9 14 15
|
isfunc |
|- ( ph -> ( F ( D Func E ) G <-> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 17 |
4 16
|
mpbid |
|- ( ph -> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) |
| 18 |
17
|
simp2d |
|- ( ph -> G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) ) |