Step |
Hyp |
Ref |
Expression |
1 |
|
funcnvmpt.0 |
|- F/ x ph |
2 |
|
funcnvmpt.1 |
|- F/_ x A |
3 |
|
funcnvmpt.2 |
|- F/_ x F |
4 |
|
funcnvmpt.3 |
|- F = ( x e. A |-> B ) |
5 |
|
funcnvmpt.4 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
6 |
|
funcnv5mpt.1 |
|- ( x = z -> B = C ) |
7 |
1 2 3 4 5
|
funcnvmpt |
|- ( ph -> ( Fun `' F <-> A. y E* x e. A y = B ) ) |
8 |
|
nne |
|- ( -. B =/= C <-> B = C ) |
9 |
|
eqvincg |
|- ( B e. V -> ( B = C <-> E. y ( y = B /\ y = C ) ) ) |
10 |
5 9
|
syl |
|- ( ( ph /\ x e. A ) -> ( B = C <-> E. y ( y = B /\ y = C ) ) ) |
11 |
8 10
|
syl5bb |
|- ( ( ph /\ x e. A ) -> ( -. B =/= C <-> E. y ( y = B /\ y = C ) ) ) |
12 |
11
|
imbi1d |
|- ( ( ph /\ x e. A ) -> ( ( -. B =/= C -> x = z ) <-> ( E. y ( y = B /\ y = C ) -> x = z ) ) ) |
13 |
|
orcom |
|- ( ( x = z \/ B =/= C ) <-> ( B =/= C \/ x = z ) ) |
14 |
|
df-or |
|- ( ( B =/= C \/ x = z ) <-> ( -. B =/= C -> x = z ) ) |
15 |
13 14
|
bitri |
|- ( ( x = z \/ B =/= C ) <-> ( -. B =/= C -> x = z ) ) |
16 |
|
19.23v |
|- ( A. y ( ( y = B /\ y = C ) -> x = z ) <-> ( E. y ( y = B /\ y = C ) -> x = z ) ) |
17 |
12 15 16
|
3bitr4g |
|- ( ( ph /\ x e. A ) -> ( ( x = z \/ B =/= C ) <-> A. y ( ( y = B /\ y = C ) -> x = z ) ) ) |
18 |
17
|
ralbidv |
|- ( ( ph /\ x e. A ) -> ( A. z e. A ( x = z \/ B =/= C ) <-> A. z e. A A. y ( ( y = B /\ y = C ) -> x = z ) ) ) |
19 |
|
ralcom4 |
|- ( A. z e. A A. y ( ( y = B /\ y = C ) -> x = z ) <-> A. y A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) |
20 |
18 19
|
bitrdi |
|- ( ( ph /\ x e. A ) -> ( A. z e. A ( x = z \/ B =/= C ) <-> A. y A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) ) |
21 |
1 20
|
ralbida |
|- ( ph -> ( A. x e. A A. z e. A ( x = z \/ B =/= C ) <-> A. x e. A A. y A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) ) |
22 |
|
nfcv |
|- F/_ z A |
23 |
|
nfv |
|- F/ x y = C |
24 |
6
|
eqeq2d |
|- ( x = z -> ( y = B <-> y = C ) ) |
25 |
2 22 23 24
|
rmo4f |
|- ( E* x e. A y = B <-> A. x e. A A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) |
26 |
25
|
albii |
|- ( A. y E* x e. A y = B <-> A. y A. x e. A A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) |
27 |
|
ralcom4 |
|- ( A. x e. A A. y A. z e. A ( ( y = B /\ y = C ) -> x = z ) <-> A. y A. x e. A A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) |
28 |
26 27
|
bitr4i |
|- ( A. y E* x e. A y = B <-> A. x e. A A. y A. z e. A ( ( y = B /\ y = C ) -> x = z ) ) |
29 |
21 28
|
bitr4di |
|- ( ph -> ( A. x e. A A. z e. A ( x = z \/ B =/= C ) <-> A. y E* x e. A y = B ) ) |
30 |
7 29
|
bitr4d |
|- ( ph -> ( Fun `' F <-> A. x e. A A. z e. A ( x = z \/ B =/= C ) ) ) |