| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funcnvsn |  |-  Fun `' { <. A , B >. } | 
						
							| 2 |  | funcnvsn |  |-  Fun `' { <. C , D >. } | 
						
							| 3 | 1 2 | pm3.2i |  |-  ( Fun `' { <. A , B >. } /\ Fun `' { <. C , D >. } ) | 
						
							| 4 |  | df-rn |  |-  ran { <. A , B >. } = dom `' { <. A , B >. } | 
						
							| 5 |  | rnsnopg |  |-  ( A e. U -> ran { <. A , B >. } = { B } ) | 
						
							| 6 | 4 5 | eqtr3id |  |-  ( A e. U -> dom `' { <. A , B >. } = { B } ) | 
						
							| 7 |  | df-rn |  |-  ran { <. C , D >. } = dom `' { <. C , D >. } | 
						
							| 8 |  | rnsnopg |  |-  ( C e. V -> ran { <. C , D >. } = { D } ) | 
						
							| 9 | 7 8 | eqtr3id |  |-  ( C e. V -> dom `' { <. C , D >. } = { D } ) | 
						
							| 10 | 6 9 | ineqan12d |  |-  ( ( A e. U /\ C e. V ) -> ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = ( { B } i^i { D } ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( A e. U /\ C e. V /\ B =/= D ) -> ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = ( { B } i^i { D } ) ) | 
						
							| 12 |  | disjsn2 |  |-  ( B =/= D -> ( { B } i^i { D } ) = (/) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( A e. U /\ C e. V /\ B =/= D ) -> ( { B } i^i { D } ) = (/) ) | 
						
							| 14 | 11 13 | eqtrd |  |-  ( ( A e. U /\ C e. V /\ B =/= D ) -> ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = (/) ) | 
						
							| 15 |  | funun |  |-  ( ( ( Fun `' { <. A , B >. } /\ Fun `' { <. C , D >. } ) /\ ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = (/) ) -> Fun ( `' { <. A , B >. } u. `' { <. C , D >. } ) ) | 
						
							| 16 | 3 14 15 | sylancr |  |-  ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun ( `' { <. A , B >. } u. `' { <. C , D >. } ) ) | 
						
							| 17 |  | df-pr |  |-  { <. A , B >. , <. C , D >. } = ( { <. A , B >. } u. { <. C , D >. } ) | 
						
							| 18 | 17 | cnveqi |  |-  `' { <. A , B >. , <. C , D >. } = `' ( { <. A , B >. } u. { <. C , D >. } ) | 
						
							| 19 |  | cnvun |  |-  `' ( { <. A , B >. } u. { <. C , D >. } ) = ( `' { <. A , B >. } u. `' { <. C , D >. } ) | 
						
							| 20 | 18 19 | eqtri |  |-  `' { <. A , B >. , <. C , D >. } = ( `' { <. A , B >. } u. `' { <. C , D >. } ) | 
						
							| 21 | 20 | funeqi |  |-  ( Fun `' { <. A , B >. , <. C , D >. } <-> Fun ( `' { <. A , B >. } u. `' { <. C , D >. } ) ) | 
						
							| 22 | 16 21 | sylibr |  |-  ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |