| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
| 2 |
|
df-rn |
|- ran ( F |` A ) = dom `' ( F |` A ) |
| 3 |
1 2
|
eqtri |
|- ( F " A ) = dom `' ( F |` A ) |
| 4 |
3
|
reseq2i |
|- ( `' F |` ( F " A ) ) = ( `' F |` dom `' ( F |` A ) ) |
| 5 |
|
resss |
|- ( F |` A ) C_ F |
| 6 |
|
cnvss |
|- ( ( F |` A ) C_ F -> `' ( F |` A ) C_ `' F ) |
| 7 |
5 6
|
ax-mp |
|- `' ( F |` A ) C_ `' F |
| 8 |
|
funssres |
|- ( ( Fun `' F /\ `' ( F |` A ) C_ `' F ) -> ( `' F |` dom `' ( F |` A ) ) = `' ( F |` A ) ) |
| 9 |
7 8
|
mpan2 |
|- ( Fun `' F -> ( `' F |` dom `' ( F |` A ) ) = `' ( F |` A ) ) |
| 10 |
4 9
|
eqtr2id |
|- ( Fun `' F -> `' ( F |` A ) = ( `' F |` ( F " A ) ) ) |