Metamath Proof Explorer


Theorem funcnvs1

Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021)

Ref Expression
Assertion funcnvs1
|- Fun `' <" A ">

Proof

Step Hyp Ref Expression
1 funcnvsn
 |-  Fun `' { <. 0 , ( _I ` A ) >. }
2 df-s1
 |-  <" A "> = { <. 0 , ( _I ` A ) >. }
3 2 cnveqi
 |-  `' <" A "> = `' { <. 0 , ( _I ` A ) >. }
4 3 funeqi
 |-  ( Fun `' <" A "> <-> Fun `' { <. 0 , ( _I ` A ) >. } )
5 1 4 mpbir
 |-  Fun `' <" A ">