| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c0ex |  |-  0 e. _V | 
						
							| 2 |  | 1ex |  |-  1 e. _V | 
						
							| 3 |  | simp3 |  |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> A =/= B ) | 
						
							| 4 |  | funcnvpr |  |-  ( ( 0 e. _V /\ 1 e. _V /\ A =/= B ) -> Fun `' { <. 0 , A >. , <. 1 , B >. } ) | 
						
							| 5 | 1 2 3 4 | mp3an12i |  |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> Fun `' { <. 0 , A >. , <. 1 , B >. } ) | 
						
							| 6 |  | s2prop |  |-  ( ( A e. V /\ B e. V ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) | 
						
							| 8 | 7 | cnveqd |  |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> `' <" A B "> = `' { <. 0 , A >. , <. 1 , B >. } ) | 
						
							| 9 | 8 | funeqd |  |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( Fun `' <" A B "> <-> Fun `' { <. 0 , A >. , <. 1 , B >. } ) ) | 
						
							| 10 | 5 9 | mpbird |  |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> Fun `' <" A B "> ) |