Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. U /\ C e. V /\ E e. W ) -> A e. U ) |
2 |
|
simp2 |
|- ( ( A e. U /\ C e. V /\ E e. W ) -> C e. V ) |
3 |
|
simp1 |
|- ( ( B =/= D /\ B =/= F /\ D =/= F ) -> B =/= D ) |
4 |
|
funcnvpr |
|- ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
5 |
1 2 3 4
|
syl2an3an |
|- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
6 |
|
funcnvsn |
|- Fun `' { <. E , F >. } |
7 |
6
|
a1i |
|- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. E , F >. } ) |
8 |
|
df-rn |
|- ran { <. A , B >. , <. C , D >. } = dom `' { <. A , B >. , <. C , D >. } |
9 |
|
rnpropg |
|- ( ( A e. U /\ C e. V ) -> ran { <. A , B >. , <. C , D >. } = { B , D } ) |
10 |
8 9
|
eqtr3id |
|- ( ( A e. U /\ C e. V ) -> dom `' { <. A , B >. , <. C , D >. } = { B , D } ) |
11 |
10
|
3adant3 |
|- ( ( A e. U /\ C e. V /\ E e. W ) -> dom `' { <. A , B >. , <. C , D >. } = { B , D } ) |
12 |
|
df-rn |
|- ran { <. E , F >. } = dom `' { <. E , F >. } |
13 |
|
rnsnopg |
|- ( E e. W -> ran { <. E , F >. } = { F } ) |
14 |
12 13
|
eqtr3id |
|- ( E e. W -> dom `' { <. E , F >. } = { F } ) |
15 |
14
|
3ad2ant3 |
|- ( ( A e. U /\ C e. V /\ E e. W ) -> dom `' { <. E , F >. } = { F } ) |
16 |
11 15
|
ineq12d |
|- ( ( A e. U /\ C e. V /\ E e. W ) -> ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. } ) = ( { B , D } i^i { F } ) ) |
17 |
|
disjprsn |
|- ( ( B =/= F /\ D =/= F ) -> ( { B , D } i^i { F } ) = (/) ) |
18 |
17
|
3adant1 |
|- ( ( B =/= D /\ B =/= F /\ D =/= F ) -> ( { B , D } i^i { F } ) = (/) ) |
19 |
16 18
|
sylan9eq |
|- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. } ) = (/) ) |
20 |
|
funun |
|- ( ( ( Fun `' { <. A , B >. , <. C , D >. } /\ Fun `' { <. E , F >. } ) /\ ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. } ) = (/) ) -> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) ) |
21 |
5 7 19 20
|
syl21anc |
|- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) ) |
22 |
|
df-tp |
|- { <. A , B >. , <. C , D >. , <. E , F >. } = ( { <. A , B >. , <. C , D >. } u. { <. E , F >. } ) |
23 |
22
|
cnveqi |
|- `' { <. A , B >. , <. C , D >. , <. E , F >. } = `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. } ) |
24 |
|
cnvun |
|- `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. } ) = ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) |
25 |
23 24
|
eqtri |
|- `' { <. A , B >. , <. C , D >. , <. E , F >. } = ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) |
26 |
25
|
funeqi |
|- ( Fun `' { <. A , B >. , <. C , D >. , <. E , F >. } <-> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) ) |
27 |
21 26
|
sylibr |
|- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. A , B >. , <. C , D >. , <. E , F >. } ) |