Step |
Hyp |
Ref |
Expression |
1 |
|
funcocnv2 |
|- ( Fun G -> ( G o. `' G ) = ( _I |` ran G ) ) |
2 |
1
|
coeq2d |
|- ( Fun G -> ( F o. ( G o. `' G ) ) = ( F o. ( _I |` ran G ) ) ) |
3 |
|
coass |
|- ( ( F o. G ) o. `' G ) = ( F o. ( G o. `' G ) ) |
4 |
3
|
eqcomi |
|- ( F o. ( G o. `' G ) ) = ( ( F o. G ) o. `' G ) |
5 |
|
coires1 |
|- ( F o. ( _I |` ran G ) ) = ( F |` ran G ) |
6 |
2 4 5
|
3eqtr3g |
|- ( Fun G -> ( ( F o. G ) o. `' G ) = ( F |` ran G ) ) |
7 |
|
coeq1 |
|- ( ( F o. G ) = H -> ( ( F o. G ) o. `' G ) = ( H o. `' G ) ) |
8 |
6 7
|
sylan9req |
|- ( ( Fun G /\ ( F o. G ) = H ) -> ( F |` ran G ) = ( H o. `' G ) ) |