Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funcofd.1 | |- ( ph -> Fun F ) |
|
funcofd.2 | |- ( ph -> Fun G ) |
||
Assertion | funcofd | |- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcofd.1 | |- ( ph -> Fun F ) |
|
2 | funcofd.2 | |- ( ph -> Fun G ) |
|
3 | fdmrn | |- ( Fun F <-> F : dom F --> ran F ) |
|
4 | 1 3 | sylib | |- ( ph -> F : dom F --> ran F ) |
5 | fcof | |- ( ( F : dom F --> ran F /\ Fun G ) -> ( F o. G ) : ( `' G " dom F ) --> ran F ) |
|
6 | 4 2 5 | syl2anc | |- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F ) |