Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcofd.1 | |- ( ph -> Fun F ) | |
| funcofd.2 | |- ( ph -> Fun G ) | ||
| Assertion | funcofd | |- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funcofd.1 | |- ( ph -> Fun F ) | |
| 2 | funcofd.2 | |- ( ph -> Fun G ) | |
| 3 | fdmrn | |- ( Fun F <-> F : dom F --> ran F ) | |
| 4 | 1 3 | sylib | |- ( ph -> F : dom F --> ran F ) | 
| 5 | fcof | |- ( ( F : dom F --> ran F /\ Fun G ) -> ( F o. G ) : ( `' G " dom F ) --> ran F ) | |
| 6 | 4 2 5 | syl2anc | |- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F ) |