Metamath Proof Explorer


Theorem funcofd

Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Hypotheses funcofd.1
|- ( ph -> Fun F )
funcofd.2
|- ( ph -> Fun G )
Assertion funcofd
|- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F )

Proof

Step Hyp Ref Expression
1 funcofd.1
 |-  ( ph -> Fun F )
2 funcofd.2
 |-  ( ph -> Fun G )
3 fdmrn
 |-  ( Fun F <-> F : dom F --> ran F )
4 1 3 sylib
 |-  ( ph -> F : dom F --> ran F )
5 fcof
 |-  ( ( F : dom F --> ran F /\ Fun G ) -> ( F o. G ) : ( `' G " dom F ) --> ran F )
6 4 2 5 syl2anc
 |-  ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F )