Step |
Hyp |
Ref |
Expression |
1 |
|
funimass4 |
|- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ { B } <-> A. x e. A ( F ` x ) e. { B } ) ) |
2 |
|
fvex |
|- ( F ` x ) e. _V |
3 |
2
|
elsn |
|- ( ( F ` x ) e. { B } <-> ( F ` x ) = B ) |
4 |
3
|
ralbii |
|- ( A. x e. A ( F ` x ) e. { B } <-> A. x e. A ( F ` x ) = B ) |
5 |
1 4
|
bitr2di |
|- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> ( F " A ) C_ { B } ) ) |
6 |
|
funimass3 |
|- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ { B } <-> A C_ ( `' F " { B } ) ) ) |
7 |
5 6
|
bitrd |
|- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |